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Abstract

We present a novel shape deformation method for its use in design optimization
tasks. Our space deformation technique based on moving least squares approxi-
mation improves upon existing approaches in crucial aspects: It offers the same
level of modeling flexibility as surface-based deformations, but it is independent
of the underlying geometry representation and therefore highly robust against
defects in the input data. It overcomes the scalability limitations of existing space
deformation techniques based on globally supported radial basis functionswhile
providing the same high level of deformation quality. Finally, unlike existing
space deformation approaches, our technique directly incorporates geometric
constraints—such as preservation of critical feature lines, circular couplings,
planar or cylindrical construction parts—into the deformation, thereby fostering
the exploration of more favorable and producible shape variations during the
design optimization process.

Keywords: mesh deformation; geometric constraints; moving least squares;
design optimization

1. Introduction

Design optimization is a key component of the product development process
of automotive industry, aircraft construction, and naval architecture. The overall
goal is to discover alternative designs with improved physical or aesthetic prop-
erties. The development process typically starts with the creation of an initial
prototype using computer aided design (CAD) tools. Subsequent steps generate
a polygon surface mesh from the CAD model as well as a volumetric simulation
mesh in order to evaluate the physical performance of the design, e.g., based on
aerodynamics or structural mechanics simulations. Design variations are then
created—either manually or driven by an optimization algorithm—based on
performance results during physical simulation.
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A challenging task within the optimization process is to develop effective
means to create alternate designs. Changing the CAD model directly is typi-
cally prohibitive, since repeated surface and volume meshing is highly time-
consuming, and for complex geometries might even require manual interaction
by an expert. An alternative is to use shape deformation techniques to adapt both
the surface and the volume mesh of the initial design prototype directly. This
way, the design optimization can be performed in a fully automatic and parallel
manner, which is of particular importance when using stochastic optimization
techniques—such as evolutionary algorithms—which typically require the cre-
ation and evaluation of a large number of design variations in order to find
a feasible solution. We note that an alternative approach to avoid the costly
remeshing of a CAD model is the use of isogeometric analysis [1]. In this work,
however, we focus on more traditional design optimization and simulation
scenarios.

Even though shape deformation techniques drastically simplify the creation
of design variations, their successful application within practical design opti-
mization tasks comes with a number of challenges:

1. Severe defects in the input data or varying element types in the simula-
tion’s surface and volume meshes prohibit surface-based or mesh-based
deformation techniques and typically require space deformation methods.

2. The results obtained from the deformationmight not be of sufficient quality,
as illustrated in the comparisons of Staten and colleagues [2] and our
recent investigations [3, 4], which suggest the use of triharmonic radial
basis functions (RBFs) for high quality shape deformations.

3. In terms of performance the method might not scale to complex opti-
mization scenarios. For example, the RBFs proposed in [3, 4] offer high
deformation quality due to their built-in minimization of fairness energies,
but the involved dense linear system restrict the method to moderately
sized problems.

4. The method might not offer a sufficient level of modeling flexibility, e.g.,
to simulate inhomogeneous material behavior during deformation. RBFs,
which implicitlyminimize bending-type energies, fail to simulate stretching-
dominant materials.

5. Critical features required for functionality and realization of design proto-
types might not be properly preserved during deformation. The typical
solution to this wide-spread problem in design optimization is to incor-
porate additional penalty terms into the cost or fitness function of the
optimization process. While this strategy effectively excludes unfavorable
designs as the outcome of the optimization process, it still requires the
costly creation and evaluation of unfavorable design variations during the
process since the penalty terms are applied in the fitness or cost function
evaluation after the variations have been created and evaluated.
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In this paper, we present a shape deformation technique based on moving
least squares (MLS) discretization [5] that improves upon existing approaches in
virtually all of the above aspects: Since we follow a space deformation approach
our method is independent of the underlying geometry representation and
highly robust towards defects in the input data. In terms of deformation quality,
our method is competitive to global triharmonic RBFs. We drastically improve
on the latter in terms of scalability, having to solve sparse linear systems only. By
incorporating explicit stretching and bending energies, we offer the same level
of modeling flexibility as surface-based methods. Finally, our technique directly
incorporates geometric constraints into the deformation, thereby fostering the
exploration of more meaningful and producible shape variations during the
design optimization process.

We extend our previous work [6] in several key aspects: First, we extend
the geometric primitives supported in our constrained deformation method
to support cylindrical regions and rigid components. Second, we extend our
comparison of subspace deformation techniques to include both global bihar-
monic and compact Gaussian RBFs, as well as more insightful mean curvature
visualizations. Third, in order to make the setup procedure of our deformation
method easier for the designer or engineer, we incorporate a technique for the
automatic detection of geometric primitives into our system. Fourth, in order to
boost the scalability of our constraint deformation, we introduce an alternative
formulation of projective constraints ensuring sparsity of the resulting linear sys-
tem. Fifth, we include additional deformation examples, including a combined
volume and surface deformation of a practical CFD setup.

2. Related Work

In this paper, we are concerned with high-quality shape deformation tech-
niques for their use in design optimization tasks. Such techniques typically
incorporate the minimization of physically-inspired energies in order to perform
smooth and physically plausible deformations, as exemplified by mesh-based
variational methods computing smooth harmonic or biharmonic deformations
by solving Laplacian or bi-Laplacian systems [7, 8]. The finite element-based
FEMWARP technique [7, 9], which computes a harmonic deformation, was
generalized from tetrahedra to hexahedra in [2], and turned out to be highly
successful in comparison to other methods. While the deformations produced
by mesh-based variational methods tend to preserve element quality well, they
have to be custom-tailored to each mesh type (e.g., tetrahedral or hexahedral),
and they depend on the element quality of the underlying mesh.

In contrast, meshless deformation techniques avoid these limitations by comput-
ing a space deformation d : R3 → R3 that deforms the whole embedding space,
thereby implicitly deforming the mesh. Spline-based free-form deformation
(FFD) techniques [10] have been widely used in both the graphics and engineer-
ing communities [11]. After its initial conception numerous extensions have
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been proposed, and we refer the reader to the survey papers [12–14] for a more
comprehensive overview. However, spline-based FFD does not offer the same
degree of fairness as harmonic or biharmonic deformations, and it requires a
rather tedious control lattice setup, as we investigate in detail in [4].

In [3] we successfully combined the advantages of meshless approaches and
mesh-based variational methods by employing radial basis functions (RBFs) for
mesh deformation. RBF space deformations can handle arbitrary polyhedral
meshes and offer a degree of fairness comparable to mesh-based variational
techniques. However, an inherent limitation of this approach is that the implicit
energy minimization is built-in by construction and therefore offers no choice
in terms of which energy to minimize. Furthermore, due to the global support
of their basis functions, the resulting linear systems are dense and therefore
limited in terms of scalability.

In this paper, we propose to overcome these limitations by employingmoving
least squares (MLS) methods [5, 15] for mesh deformation. These techniques have
been successfully used in meshless physics simulation and computer animation,
and offer the same high level of deformation quality as RBF deformations, but
they also come with increased flexibility with regards to energy minimization.
Furthermore, the linear systems resulting from MLS-based discretization are
generally sparse and therefore offer a drastically increased level of scalability
compared to approaches based on globally supported RBFs.

A rather recent innovation in the development of shape deformation tech-
niques is the integration of additional constraints into the deformation [16], as
exemplified by the feature-preserving surface deformation technique of Masuda
and colleagues [17], or by the iWires system [18] for deformation of man-made
objects. More recently, the latter approach was generalized to component-wise
controllers [19], and the work of Habbecke and Kobbelt [20] presents an efficient
technique for the linear analysis of non-linear constraint in geometric model-
ing systems. However, all of the above methods are inherently surface-based.
Therefore, their applicability to design optimization tasks is rather limited. A
notable exception in this regard is the projection-based technique of Bouaziz and
colleagues [21], since it allows for general constraints on arbitrary geometric data
sets. We integrate this approach for constraint preservation into our MLS-based
space deformation technique, thereby fostering the creation of more feasible
design variations during design optimization.

In the following sections we describe our deformation technique in detail,
going from the fundamentals to the specifics. We begin with a description
of a general deformation model suitable for design optimization (Section 3).
We describe our approach to space deformation based on subspace techniques
in Section 4, where we also analyze and compare different choices of subspaces.
In order to make our technique fully independent from the underlying geome-
try representation, we describe a spatial discretization of deformation energies
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Figure 1: Handle-based surface deformation of a plane (1100 vertices). From left to right: Unde-
formedmodel, minimization of pure bending, pure stretching, and amixture thereofwith parameters
γb = 0.6 and γs = 1.0. We choose γf = 100 in order to ensure that prescribed handle and fixed
constraints are satisfied.

in Section 5. Finally, we describe how to integrate constraints into the deforma-
tion in Section 6.

3. Mesh-Based Surface Deformation

In this section, we describe a mesh-based deformation model that is suitable
for a design optimization framework. Since the most common targets for design
optimization are sheet metal surfaces, such as car bodies, aircraft wings, or ship
hulls, we concentrate on surface deformationmodels first. The resulting model
will then be extended to subspace surface deformations and true volumetric space
deformations in the following sections.

The shape deformation will be controlled by an interface that specifies dis-
placements for certain surface regions. In a design optimization context, we
propose the use of a direct manipulation interface, where the user—being either
a human designer or an optimization algorithm—directly manipulates certain
regions of the surface mesh. In contrast to, e.g., the control point metaphor of
lattice-based freeform deformation (FFD) [10], direct manipulation interfaces
are preferable for design optimization, since the direct coupling between opti-
mization parameters and the effect on the design variation leads to improved
convergence rates [22, 23].

Furthermore, we employ the so-called handle metaphor [24], where we distin-
guish three types of surface regions on the mesh: The handle regionH is directly
displaced by the user. The fixed region F stays in place. The deformable region
D is updated according to the physical deformation method while satisfying the
Dirichlet constraints given by H and F. An example of this modeling metaphor
is given in Figure 1, with the handle region in gold, the fixed region in gray, and
the deformable region in blue.

The deformable region D should behave in a physically-plausible manner,
i.e., it should deform like a thin shell based on stretching and bending energies.
The deformations occurring in design optimization tasks typically are rather
small. Therefore, a linear deformation model will be sufficient, where stretching
and bending are measured by first and second order partial derivatives of the
displacement function d, respectively.
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In the continuous setting, the deformation d : S→ R3 of a surface S can be
computed by minimizing the energy functional

Eshell[d] = γs Estretch[d] + γb Ebend[d] + γf Efix[d], (1)

consisting of weighted energy contributions for bending, stretching, and con-
straint deviation [25]:

Estretch[d] =

∫
D

‖∇d(x)‖2 dx, (2)

Ebend[d] =

∫
D

‖∆d(x)‖2 dx, (3)

Efix[d] =

∫
H∪F

∥∥d(x) − d̄(x)∥∥2 dx, (4)

where∇d denotes the Jacobian ofd,∆d = ∇·∇d its Laplacian, ‖·‖ the Frobenius
matrix norm or the Euclidean vector norm, and d̄ the prescribed Dirichlet
constraints for the fixed and handle regions.

If we assume that the surface S is discretized by a proper triangle meshM

(non-degenerate triangles, one single two-manifold component), then the most
flexible discretization of the above thin shell deformation energies is one whose
degrees of freedom are the individual vertex positions x1, . . . , xn, or the vertex
displacements d1, . . . ,dn:

dh(x) =

n∑
i=1

diψi(x), (5)

whereψi are the piecewise linear shape functions on the triangulationM. Based
on this discretization we can approximate the above energies [25, 26] as

Estretch[dh] =
∑
t∈D

At ‖∇dt‖2 , (6)

Ebend[dh] =
∑
xi∈D

Ai ‖∆di‖2 , (7)

Efix[dh] =
∑

xi∈H∪F

Ai
∥∥di − d̄i∥∥2 , (8)

where Ai denotes the Voronoi area of vertex i, and At is the area of triangle t.
We use the well-established discrete differential operators proposed in Meyer et
al. [27], which allows us towrite the discrete gradient∇dt and discrete Laplacian
∆di as a linear combination of neighboring vertices.

For implementation convenience and easier extensibility in the following
sections, we write the discrete shell energy (6)–(8) as

Eshell[dh] = γs ‖Gd‖2 + γb ‖Ld‖2 + γf
∥∥F(d− d̄)

∥∥2 , (9)
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where d = (dT1 , . . . ,dTn)T is the (n× 3) matrix of per-vertex displacements, and
G and L are gradient and Laplace matrices containing the required cotangent
weights in each row and having their rows weighted by

√
Ai, respectively (see

[25, 26] for details). F is a diagonal matrix with Fi,i =
√
Ai if xi ∈ F ∪H and

Fi,i = 0 otherwise. The minimization of the shell energy (9) then requires us to
solve the normal equations of the linear least squares system(

γsG
TG+ γbL

TL+ γfF
TF
)
d = γfF

TFd̄, (10)

which we solve efficiently using sparse Cholesky factorization [28]. Note that
in case the conditioning of the normal equations becomes a problem, we could
also solve the system directly using a sparse QR factorization method. In order
to ensure proper satisfaction of the Dirichlet boundary constraints, we typically
choose γf to be one or two orders of magnitude larger than the smoothness
weights γs and γb. This mesh-based surface deformation approach, depicted in
Figure 1, is our ground truth technique, which we try to reproduce using (more
robust and more general) space deformation methods.

4. Subspace Surface Deformation

The deformation model described in the previous section offers high flexibil-
ity, since it uses the degrees of freedom of the mesh as degrees of freedom for the
surface deformation. As motivated above, we are aiming at a space deformation
approach, which deforms not only the given surface S, but the whole spaceΩ
embedding the object.

One advantage of space deformations is that they are independent from the
underlying geometry representation, i.e., the same technique is applicable to point-
sets, polygonal surface meshes, and polyhedral volume discretizations. This also
allows us to deform an existing volume mesh simultaneously with the surface, a
feature of particular importance for design optimization. Furthermore, complex
designs often consist of multiple disconnected components that space deforma-
tions can naturally deform at once, while mesh-based methods would require
an additional coupling to propagate the deformation from one component to
another. Finally, the robustness against defects in the input data (e.g., degenerate
triangles) is another compelling argument for space deformations, which are
neither affected by the complexity nor by the quality of the input meshes.

In contrast to the previous section, we are looking for a deformation function
d : Ω ⊂ R3 → R3 that deforms the embedding spaceΩ around the model, while
at the same time offering a comparable flexibility and deformation quality:

dh(x) =

k∑
j=1

wjϕj(x),

where ϕ1, . . . ,ϕk are coarser shape functions (k� n) andwj ∈ R3 their coeffi-
cients.
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Figure 2: Surface sampling: Left: Dense random sampling of the mesh. From the dense samples we
select a farthest point subset (center), perform iterative Lloyd relaxation on this subset (right), and
use these points as RBF centers/MLS samples .

In the following, we will analyze the modeling flexibility of different sub-
spaces corresponding to different shape functions ϕj. In order to make the
experiments more comparable to the mesh-based deformation, and to avoid
any dependence on potentially insufficient numerical quadrature, we minimize
the same vertex-based discrete shell energy (9), but replace the per-vertex dis-
placements di by dh(xi). We can then express the n × 3 matrix d of vertex
displacements in terms of the coefficientsw = (wT1 , . . . ,wTk)T ∈ Rk×3 using a
n× k subspace matrixΦ:

d =Φw with Φi,j = ϕj(xi).

Inserting this into the discrete shell energy (9) leads to the k× k least squares
system

ΦT
(
γsG

TG+ γbL
TL+ γfF

TF
)
Φw = ΦT

(
γfF

TFd̄
)
, (11)

which has a drastically reduced complexity compared to the previous least
squares system for surface deformation in (10).

In the following, we compare different choices for the shape functionsϕj. Mo-
tivated by our previous investigations [3, 4], we focus on meshless, kernel-based
discretizations, and start with globally supported triharmonic and biharmonic
RBFs, which however have the drawback of high computational cost and limited
scalability. We then analyze compactly supported Gaussians and Wendland
RBFs [29] as well as moving least squares discretization [5].

For these kernel-based discretizations, we first need an efficient method to
place the basis functions ϕj on the surface S. To this end we employ a sampling
strategy based on iterative Lloyd-relaxation [30], which we illustrate in Figure 2.
Starting from the initial mesh, we create a dense sampling of the surface by
computing random points within each polygonal face of the mesh. We then
select a subset of k samples from the dense sampling by means of farthest point
selection: We start with a random sample and iteratively add new samples based
on maximizing the minimum distance between the new and the previously
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chosen samples. Finally, in order to maximize uniformity of the sampling we
perform Lloyd-relaxation, i.e., we iteratively move each sample to the barycenter
of the dense sample points being closest to the sample [30].

Global RBFs. In our previous work [3, 31], we successfully employed global
triharmonic RBFs for high quality mesh deformation. Following this approach,
we can construct a subspace by using shape functions

ϕj(x) = ‖x− cj‖3

located at centers cj. In Figure 3 we provide a comparison between the purely
surface-based deformation and a subspace deformation using global triharmonic
RBFs. While triharmonic RBFsworkwell forminimizing bending (which they do
by construction), they fail to model stretching-dominant materials. Furthermore,
due to their global support the matrixΦ is dense, posing a serious limitation in
terms of scalability. Even though biharmonic basis functions ϕj(x) = ‖x− cj‖
(see [29, 32] for the derivation of general polyharmonic RBFs) yield improved
results for stretching minimization, they still suffer from the same scalability
limitations as triharmonic basis functions.

Compact RBFs. An alternative to globally supported RBFs are compactly sup-
ported RBFs, such as the C2-continuous Wendland functions

ϕj(x) = ϕ (‖x− cj‖)

= ϕ(r) =

{
(1− (r/σ))4((4r/σ) + 1) , r < σ ,
0 , otherwise .

The choice of the support radius σ is critical for the quality of the resulting
subspace. In our implementation, we set support radii so that at least s shape
functions ϕj cover each geometry point xi. As illustrated in Figure 3, the results
with compact RBFs heavily depend on the chosen support radius. A small radius
of s = 5 leads to artifacts in the deformation. Only with an large radius of s = 50
the subspace produces results comparable to the surface deformation. In this
case, however, the resulting linear system is not sufficiently sparse anymore,
so that the compact RBFs are not an alternative in terms of scalability. Similar
limitations apply to Gaussian RBFs

ϕj(x) = e−
‖x−cj‖2

σ2 ,

leading to a certain amount of smoothness artifacts in the deformed meshes.
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Bending

(a) surface (b) triharmonic (c) biharmonic (d) Wendland s = 5

(e) Wendland s=50 (f) Gaussian s = 5 (g) Gaussian s = 50 (h) MLS s = 5

Stretching

(i) surface (j) triharmonic (k) biharmonic (l) Wendland s = 5

(m) Wendland s=50 (n) Gaussian s = 5 (o) Gaussian s = 50 (p) MLS s = 5

Figure 3: Subspace deformation of a plane (1100 vertices) minimizing bending (top rows) and
stretching (bottom rows) energies. For each energy type we compare the mean curvature plot of the
ground truth surface deformation, global triharmonic and biharmonic RBFs, compact Wendland
and Gaussian RBFs with small (s = 5) and large (s = 50) support, MLS with small (s = 5) support.
RBFs and MLS use 1000 shape functions.

10



Moving Least Squares. An alternative to RBFs is the meshless moving least
squares (MLS) approximation method, which allows for the construction of
high quality and scalable subspaces, as we illustrate in Figure 3. In contrast to
compact RBFs, MLS yield high quality results already with a cover of s = 5.
Since a reasonably comprehensive introduction to MLS is beyond the scope
of this paper we refer the reader to the detailed introduction of [5] and only
provide the required basic facts. The MLS shape functions ϕj(x) are defined as

ϕj(x) = p(x)TM−1(x)p(cj)w(x− cj) ,

where p(x) is the vector of monomials p(x,y, z) = (1, x,y, z)T and the spatially
varying matrixM(x) ∈ R4×4 is the so-called moment matrix

M(x) =

k∑
j=1

w(x− cj)p(cj)p(cj)
T .

The weighting function w(·) is compactly supported and of sufficient smoothness.
In our implementation, we usew(r) = 1

2 cos(r/σ ·π)+
1
2 , withw(r) = 0 for r > σ.

Other choices of smooth basis functions work equally well, see [5] for details.
Unlike RBFs, the MLS basis functions do not have a simple analytic form, but
require the inversion of the moment matrix for function evaluation. Note that
the moment matrix becomes singular if the MLS samples cj lie in the kernel of a
linear polynomial (coplanar samples). In contrast to Martin and colleagues [15],
who switch to more complex generalized MLS basis functions in order to handle
degenerate sampling, we robustly handle this case by replacing the inverseM−1

by the pseudo-inverse M+ [33]. We compute M+ as VTΣ+U based on the
singular value decomposition (SVD)M = UΣVT , since this is the numerically
most stable method [33, 34]. Using the SVD is also the computationally most
expensive technique for computing the pseudo-inverse, but for our 4×4matrices
this turned out to not be crucial.

Even thoughMLS basis functions are significantlymore expensive to evaluate
than RBFs, this is not a problem in design optimization, since the MLS matrix
Φ, and hence all pseudo-inverse computations, can be pre-computed and re-
used throughout the design optimization loop. More importantly, the MLS
discretization scales well to complex models due to the sparsity ofΦ, and the
evaluation of ϕj is trivial to parallelize.

We provide a performance comparison between global and compact RBFs as
well as MLS basis functions in Figure 4. In this test, we perform deformations
with an increasing number of basis function centers ranging from 1k to 10k
degrees of freedom. We can observe that with an increasing number of basis
functions both compact RBFs and MLS outperform the globally supported RBFs.
In terms of memory usage the globally supported RBFs result in dense system
matrices and therefore have quadratically growing storage requirements. In
contrast, both compact methods have storage requirements growing only linear
with a constant depending on the support radius.
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Figure 4: Performance comparison between global biharmonic RBFs, compact Wendland RBFs
(s = 50), and MLS basis functions (s = 5). Computation time in milliseconds versus the number of
basis function centers.

In summary, an MLS subspace yields a deformation that combines the
strengths of the three approaches: the flexible energy minimization of mesh-
based surface deformations, the high quality of global RBFs, and the scalability
of compactly supported basis functions. The flexibility of MLS deformations
was for instance demonstrated in [15], where MLS shape functions were used to
deform solids, shells, and rods based on mechanical/physical laws.

5. Volumetric Space Deformation

The previous section motivated the use of MLS shape functions as a flexible
subspace for high quality deformation. However, the above comparisons—while
using a space deformation function—still employed the stretching and bending
energies (6)–(8) based on a surface mesh. In this section, we generalize the MLS
deformation to true volumetric space deformations, which can then robustly
process defect-laden, highly complex, and multi-component input meshes. To
this end, we have to (i) place MLS kernels not only on the surface, but also
in the embedding space Ω, and (ii) replace the vertex-based quadrature for
integrating gradients and Laplacians over the surface S by a numerical cubature
for integration over the embedding spaceΩ.

The volumetric sampling is a simple extension of the surface sampling shown
in Figure 2. We first perform a dense sampling of the volume elements and then
choose a subset by means for farthest point sampling. We add this subset to the
initial farthest point sampling of the surface S and then perform a combined
Lloyd clustering of both the surface and volume samples, where we give a higher
weight or density to the surface, leading to a slightly higher sampling density of
the surface compared to the volume. As before, we denote the resulting MLS
samples by cj, j = 1, . . . ,k.
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Figure 5: Handle-based deformation of a plane minimizing deformation energies using a spatial
discretization based on MLS (1000 kernels). Pure bending (left), pure stretching (center), and a
mixture thereof (right).

We perform exactly the same sampling strategy to determine integration
pointsqi, i = 1, . . . ,N, butmake sure that the sampling density of the integration
points qi is sufficiently larger than the density of the MLS samples cj (we use
N ≈ 4k).

Discretizing the stretching energy (2) in space amounts to evaluating the
basis function derivatives at integration points:

Estretch[dh] =

N∑
i=1

Vi ‖∇d(qi)‖2 =
N∑
i=1

Vi

∥∥∥∥∥∥
k∑
j=1

wj∇ϕj(qi)

∥∥∥∥∥∥
2

= ‖Gw‖2 , (12)

where Vi is the (approximate) Voronoi volume of integration point qi, andG is
a 3N× k gradient matrix with

G3i,j =
√
Vi ·

∂ϕj(qi)

∂x
,

G3i+1,j =
√
Vi ·

∂ϕj(qi)

∂y
,

G3i+2,j =
√
Vi ·

∂ϕj(qi)

∂z
.

Similarly, discretizing the bending energy (3) in space leads to

Ebend[dh] =

N∑
i=1

Vi ‖∆d(qi)‖2 =
N∑
i=1

Vi

∥∥∥∥∥∥
k∑
j=1

wj∆ϕj(qi)

∥∥∥∥∥∥
2

= ‖Lw‖2 , (13)

with a N × k Laplacian matrix Li,j =
√
Vi∆ϕj(qi). For the computation of

analytical basis function derivatives we refer the reader to [5].
For the prescribed Dirichlet constraints we keep the subspace formulation∥∥FΦw− Fd̄

∥∥2 of (11). Combining this with the above spatial energies, i.e., with
the MLS version of the gradient matrixG and the Laplace matrix L, leads to the
final k× k linear least squares system(

γsG
TG+ γbL

TL+ γfΦ
TFTFΦ

)
w = γfΦ

TFTFd̄. (14)
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Solving this system yields the desired MLS space deformation, which no longer
depends on the complexity and quality of the input meshes. As demonstrated
in Figure 5, the MLS deformation based on spatial energies provides the same
deformation quality and flexibility as the surface-based energy discretization
of Figure 3.

6. Constrained Space Deformation

A design prototype typically contains regions with important geometric
properties such as planar components, characteristic feature lines, or circular
and cylindrical couplings. Such geometric features are often essential for the
design in order to fulfill its function or to meet production limitations. The
classical approach to maintain such constraints during an optimization process
is to penalize constraint violation by integrating additional penalty terms into
the fitness or cost function. However, this approach has the severe drawback
that infeasible designs are still created and evaluated, which is particularly un-
favorable when the performance evaluation involves time-consuming CFD or
FEM simulations.

In contrast, we propose to maintain constraints right from the start by incor-
porating them directly into the deformation method, thereby preventing the
evaluation of infeasible designs. Within our method the user marks a partic-
ular region—probably guided by some mechanism for automatic detection of
geometric primitives—as being of a particular constraint type such as, e.g., pla-
narity. Then, when deforming the shape by manipulating the handle region, our
method automatically makes sure that the corresponding constraint is satisfied
while still minimizing the deformation energy of (1).

As already noted in Section 2, several constrained deformation approaches
have been proposed during recent years [16]. Most of them, however, are purely
surface-based in nature and therefore too limited for general design optimiza-
tion tasks. In contrast, the Shape-Up technique of Bouaziz and colleagues [21]
maintains constraints on arbitrary geometric data sets, making it the method
of choice for our application area. In the following, we will briefly describe the
technique and show how we adopt it within our system. For a full treatment of
the method, however, we refer the reader to the original paper [21].

The key ingredients of Shape-Up are projection operators for different types
of constraints. Modeling a constraint (e.g., planarity) for a vertex set x requires
the projection P(x) of x onto the constraint set C, i.e., the smallest change of x
such that it satisfies the constraint. For a planarity constraint, for instance, P(x)
computes the projection onto a least squares fitting plane. For the most common
constraints this projection can be computed quite easily [21].
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Letm be the number of different constraint sets Ct, t = 1, . . . ,m. The Shape-
Up method then measures deviation from the constraints as squared distance
from constraint projections Pt(x):

Econstr(x) =

m∑
t=1

‖x− Pt(x)‖2 . (15)

Since the projections Pt(x) typically are nonlinear functions of x, Econstr is mini-
mized by alternating optimization (also called block coordinate descent): First x
is kept fixed and all projections xt = Pt(x) are computed (local step). Then the
projected target positions xt are held fixed and x is updated by a simultaneous
least squares fit to the target positions xt (global step). This process is iterated
until convergence, and converges to a feasible solution if it exists (see [21] for
details). We choose this type of minimization strategy for the sake of simplicity
and robustness. However, other variants such as a non-linear conjugate gradient
method or a trust-region variant of Newton’s method [35] are applicable as well.

In each iteration, the global step requires the solution of a linear least squares
system of the form

CTCx = CT x̄, (16)

where x̄ is the vector of the stacked projections xt. The matrix C contains the
stacked constraint matrices Ct, which combine the mean-centered positions of
constrained points, i.e., for each constraint set Ct involving nt points Ct is a
nt × nt matrix with entries

Ct(i, j) =

{
1− 1

nt
, i = j ,

− 1
nt

, otherwise .

When combining the individual constraint matrices Ct into the global matrix C,
we adjust the columns of Ct such that they match the corresponding indices in
the global vertex set x. The mean-centering of positions allows for translation of
constraint sets during optimization, thereby improving the overall convergence
rate of the iterative alternating optimization (see also Section 2.2 and Figure 10
in [21]).

In order to integrate this approach into our framework, we add a constraint
energy similar to (15) to our discrete shell energy (9) (weighted by γc) and also
perform the above alternating optimization procedure. In each iteration, we
first find the constraint projections P(x) (local step) and combine them into the
target vector x̄, which we rewrite in terms of displacements d instead of position
x. The global minimization of constraint deviation is then integrated into the
previous least squares system(

γsG
TG+ γbL

TL+ γfΦ
TFTFΦ+ γcΦ

TCTCΦ
)
w =

ΦT
(
γfF

TFd̄+ γcC
T x̄
)
, (17)
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which we again solve efficiently using sparse Cholesky factorization [28]. We
iterate this alternating optimization procedure until convergence, which typically
happens after 1k–10k iterations in our examples—depending on the complexity
of the constraints involved. Note that the convergence rate is independent from
the chosen sampling density which only affects approximation accuracy.

6.1. Alternative constraint formulation
Applying the above constraint formulation in modeling setups with large

constraint regions such as those obtained from automatic primitive detection
(see Section 6.3) reveals a severe limitation in the above formulation: Due to the
mean-centering of constraints, the constraint matrix C can become dense, such
that the resulting linear system can no longer be solved efficiently. The reason
for this is the following: Let nt be the number of points involved in a particular
constraint set Ct. Then in the original formulation this leads to nt×nt non-zero
entries in the constraint matrix C, leading to a fully dense matrix in the worst
case scenario of a constraint covering the whole mesh, e.g., a planarity constraint
on a planar mesh.

However, the primary reason for mean-centering is the improved conver-
gence rate due to translation invariance of each constraint set. We propose
an alternative constraint formulation sharing the same improved convergence
behavior while ensuring sparsity of the constraint matrix. Instead of mean-
centering the points involved in a constraint set Ct, we may also subtract an
arbitrary point xp ∈ Ct, e.g., the point closest to the mean, thereby leading to nt
rows with only two entries

Ct(i, j) =

{
−1 , j = p ,
1 , j = i .

Using the above formulation effectively ensures that the constraint matrix C is
sparse even in case of large constraint regions Ct.

6.2. Constraint Types
In our current system, we implement five basic geometric constraint types

of fundamental nature and general use: Planarity, circularity, cylinder, feature
lines, and rigid shape constraints. For planarity and circularity constraints we
employ projection operators described in [21]. For the cylinder constraint, we
use the cylinder fitting method described in [36] and project the points back
onto the fitted cylinder. Our feature line constraint is modeled as a conformal
matching of the points on the initial feature line, which therefore might translate,
rotate, and uniformly scale. Similar to the feature line constraint, we also support
shape constraints based on rigid matching, allowing for translation and rotation
only. This constraint can be useful in a number of settings, e.g., in order to
keep complete components of a design rigid, or to rigidly maintain the shape of
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selected mesh elements—such as boundary layer cells in a CFD mesh—which
are of particular importance for accurate physical performance calculation. In
Figure 6, we show synthetic examples demonstrating the effect of each constraint
type. Note that due to the iterated nature of the alternating optimization, the
resulting meshes do indeed minimize the deformation energy while satisfying
the geometric constraints.

6.3. Automatic Constraint Detection
The manual selection of geometric primitives in a mesh can be a tedious

and time-consuming task. In order to speed up the setup process and guide
the designer towards meaningful constraints, we employ a procedure for the
automatic detection of primitives in the surface mesh which then can be used as
constraints during deformation. Note that even though in some design optimiza-
tion scenarios it is possible to transfer information about geometric primitives
from a corresponding CAD model, this is not necessarily the case in purely
mesh-based modeling or reverse engineering scenarios.

The automatic detection of geometric primitives in point sets is a well-known
problem in the context of surface reconstruction and segmentation. One of the
most widely used techniques is the random sample consensus (RANSAC) algo-
rithm [37]. The core idea of this technique is to repeatedly draw random samples
defining a geometric primitive from given point data and then to evaluate how
well the primitive approximates the rest of the data set, see [38] for details. Our
primitive detection is based on a combination of the efficient RANSAC algorithm
described in [39] and a forward search technique [40, 41] to further refine the
estimated primitives.

A key question when using the above techniques on a surface mesh is the
choice of input data. Simply using mesh vertices and vertex normals leads to
unsatisfactory results, since the normals at vertices on sharp feature edges are
not aligned with the normal direction of the (multiple) geometric primitives
such a vertex belongs to, see Figure 7 left. We resolve this issue by using face
barycenters and face normals as input instead. The detected primitives are then
assigned to all vertices belonging to the corresponding faces, thereby allowing a
vertex to belong to multiple primitives. Our system currently supports plane,
cylinder, sphere, and cone primitives, see Figure 7 for examples. From the
set of detected primitives the user then selects those to be preserved during
deformation.

7. Results

In this section, we present different deformation results using our constrained
space deformation technique. We use the Eigen [42] library for efficient ma-
trix operations and the sparse Cholesky decomposition of CHOLMOD [28] for
solving linear systems. We parallelize the evaluation of MLS basis functions
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Figure 6: Synthetic constraint examples. For each constraint type (planarity, circularity, feature
line, cylinder, rigidity) we show the original mesh, the deformation without constraint, and the
deformation minimizing bending and constraint energies using γb = 1.0 and γc = 10 as weights.
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Figure 7: Left: Cube with sharp feature edges (orange), face (green) and vertex normals (red).
Center/right: Automatically detected primitives in the fandisk and joint models. Each colored
region corresponds to a plane or cylinder primitive.

and their analytical derivatives using OpenMP [43]. Furthermore, we use the
Surface_mesh data structure [44] for efficient surface mesh deformation. In a
typical modeling scenario satisfying the prescribed fixed and handle constraints
is of highest importance and geometric constraints satisfaction is typically more
important than smoothness minimization. Therefore, we select the weights
balancing the individual constraint contributions such that γf > γc > γs/b,
where γf ≈ 1000, γc ≈ 10, γs/b ≈ 1. We also note that we normalize the
different weights by the number of constraints prescribed for a given type and
region.

7.1. Surface Deformation
In this section, we present examples for constrained deformations on sur-

face models of typical mechanical parts, such as they can occur within design
optimization scenarios. We begin with example deformations of the fandisk
model in Figure 8. In this setup, we keep the bottom part of the model fixed
and translate the handle region to the left. We select a subset of the sharp edges
of the model as feature lines, and an additional planar constraint area in the
upper left area. As becomes clear from the illustration, deforming the model
without constraints distorts both feature lines and the planar region, whereas
with constraints both of them are nicely preserved.

Example deformations of the joint model are illustrated in Figure 9. We keep
the bottom fixed, lift the top handle region, and impose a circularity constraint
on the pipe-like opening. Without the constraint the opening would no longer
fit with connecting parts, with the constraint, it does. The rightmost image
in Figure 9 shows the use of an additional planarity constraint. In this case, the
initially already planar region deforms in such a way that the resulting mesh
minimizes both the smoothness and planarity energies. In Figure 10 we present
a deformation example of the joint model using constraints determined through
our automatic geometric primitive detection. We keep the bottom fixed again
and use the top cylinder region as a handle.
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Figure 8: Deformation of the fandisk model. From left to right: Original model, deformation without
constraints, with feature line constraint, and with additional planarity constraint.

Figure 9: Deformation of the joint model. From left to right: Original model, deformation without
constraints, with a circularity constraint, and with a additional planarity constraints.

Figure 10: Deformation of the joint model using automatically detected geometric primitives. Left:
Original setup keeping the bottom fixed and using the top cylinder region (golden) as a handle.
Right: Deformed model.

Figure 11: Deformation of the DrivAer model. Left: Original setup. Right: Stretching the front
while keeping the wheelhouse circular.

20



Finally, as amore complex example, we showadeformation of theDrivAer [45]
reference shape for car body aerodynamics in Figure 11. The mesh contains 465k
vertices, and we use 4k MLS samples to discretize the displacements and about
16k cubature points to discretize the deformation energies. As can be seen from
the illustration, the circular shape of the wheelhouse is nicely preserved. We also
note that deformations using global RBFs would not be easily applicable to this
scenario: The number of user-prescribed handle and fixed constraints is much
too high to be feasible for dense linear systems solvers. However, advanced RBF
methods such as specialized incremental QR solvers ([31, 46]) or fast multipole
methods ([29, 47]) might still be applicable.

7.2. Volume Deformation
In this section, we compare the quality of our new volumetric mesh defor-

mation method to that of our previously proposed RBF technique. We show an
example deformation of a tetrahedral volume mesh containing 13k vertices in
Figure 12. In this setup, we keep the outer boundary fixed and use the interior
sphere-shaped boundary as handle. We can see that both techniques allow
for large deformations without resulting in inverted mesh elements. In order
to provide a quantitative comparison to our previous results [31], we analyze
mesh quality in terms of minimum scaled Jacobian. Our new method results
in even slightly increased mesh quality (0.05) compared to our previous RBF
deformations (0.03). Both methods produce similar results, and we refer to [31]
for a quantitative evaluation of mesh quality and element inversion of the RBF
technique as well as other state-of-the-art deformation methods.

As an additional comparison to our previous results [31], we include a defor-
mation example of the hexahedral pipe model containing 11k vertices and 8.5k
cells. We show the original and deformed meshes in Figure 13. The original
mesh has a minimum scaled Jacobian of 0.98. After performing one step of
absolute deformation to the full parameter change—see [31] for a description
of absolute and relative deformation—the RBF deformation results in a mesh
quality of 0.951, and our new method yields 0.954.

7.3. Combined Surface and Volume Deformation
As already noted in the introduction, an important feature of space deforma-

tion methods is the ability to deform an existing volumetric simulation mesh
along with a surface. Therefore, our final example is a combined surface and
volume mesh deformation of the DrivAer model, as illustrated in Figure 14.
In this case, we use a hex-dominant polyhedral volume mesh generated using
OpenFOAM’s snappyHexMesh utility, containing 1.3M vertices and 970k cells.
We use 5k MLS samples on the surface as well as 2k samples in the volume to
discretize displacements. Correspondingly, we use about 28k integration points
to discretize our deformation energies. In order to better preserve the shape of
boundary layer cells, we apply rigid shape constraints on those elements. For the
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Figure 12: Comparison of volume mesh deformation quality in terms of min. scaled Jacobian. From
left to right: The original mesh (0.12), a triharmonic RBF deformation (0.03), and our technique
(0.05). Note that both methods did not produce inverted elements, as indicated by their still positive
minimum scaled Jacobians.

Figure 13: Deformation of the pipe model, comparison in terms of minimum scaled Jacobian. Left:
Original model (0.98). Right: Deformed model (0.954).

Figure 14: Combined volume and surface deformation of the DrivAer model. Top row: Original
setup and deformation without constraints. Bottom row: Deformation with rigid shape constraints,
close-up of boundary layer elements.
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deformation we lift the roof of the car model, which is a standard deformation
in optimizing car body aerodynamics. After deformation the overall volume
mesh quality is nicely preserved and the mesh is still usable for simulation, as
we evaluated using OpenFOAM’s checkMesh utility. The different meshes yield
the following results for the important cell orthogonality check: The original
mesh has a maximum value of 53.81, the deformed mesh without constraints
has 54.52, and the mesh with rigid shape constraints enabled yields a value of
54.42 (smaller value indicating higher mesh quality). The less critical aspect
ratio and faces skewness checks do not report significant differences.

8. Conclusion and Outlook

In this paper, we presented a novel space deformation technique based
on MLS methods for its use in design optimization scenarios. Our method
offers similarly high quality deformations as our previous RBF deformation
technique, but with significantly increased scalability. Our space-based energy
discretization allows for flexible modeling operations typically only provided
by mesh-based deformation techniques. Finally, by incorporating geometric
constraints into the deformation, we not only increase modeling capabilities but
also its usefulness for design optimization tasks. Our alternative formulation
of projective constraints increases the scalability of the technique to modeling
scenarios involving large constraint regions, and our automatic detection of
geometric primitives aids the designer or engineer during setup process.

Even though our technique provides increased flexibility and scalability
compared to RBF deformation, the implementation complexity increases as well.
While RBF deformations simply require the solution of a dense linear system,
our new technique involves Lloyd-relaxation in 3-space, numerical integration,
more complex basis functions and derivatives, as well as the selection of several
parameters such as the constraint weights, the number of sample points, or the
basis function support radii.

There are multiple directions for future work: Even though we currently sup-
port a wide variety of constraints, a natural direction for future work would be
the integration of additional constraint types such as the maintenance of mutual
distances between parts or the adherence to maximal or minimal widths and
heights. More advanced constraints could include relations between multiple
parts, such as symmetry, orthogonality, or co-planarity, including methods for
the automatic analysis of constraints using an approach similar to [48].

Finally, we look forward to evaluating our technique within an actual design
optimization scenario including physics simulations, e.g., the aerodynamic
performance optimization of a passenger car.
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