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e Deformation function d: IR® — R3

e Warp embedding space around object M

e Methods:
- Free-form deformation (FFD)
- Direct manipulation FFD
- Radial basis functions
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Free-Form Deformation (FFD)

Embed object in control lattice

Compute local coordinates

Move control points

e Deform object according to updated control points




Free-Form Deformation: Embedding
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Free-Form Deformation: Embedding

Control points [ Local coordinates |
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Free-Form Deformation Function
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Free-Form Deformation Function

Control point displacements

dcy, == 0cij, =
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Local coordinates
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Basis functions
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Direct Manipulation FFD

¢ Move object points directly

e Automatically compute control point displacements satisfying
new object point locations
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Radial Basis Functions

e Various choices: Gaussian, multiquadrics, thin plate spline...

e Choose ¢(r) = r® so that d minimizes fairness energy:
Ji

e Where to place kernels?
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Radial Basis Function Deformation

¢ Handle-based direct manipulation interface
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Radial Basis Function Deformation

e Handle-based direct manipulation interface

— Place kernels in handle and fixed regions

‘H: Handle region

D: Deformable region

F: Fixed region



Radial Basis Function Deformation

¢ Determine weights and polynomial coefficients



Radial Basis Function Deformation

¢ Determine weights and polynomial coefficients

— Solve linear system

o 2) (%)



Radial Basis Function Deformation

¢ Determine weights and polynomial coefficients

— Solve linear system

Basis function weights

<st><§:><3>

[ Polynomial coefficients]




Radial Basis Function Deformation

¢ Determine weights and polynomial coefficients

— Solve linear system

®;; = p;(p:) Basis function weights

;z><v§><z>

[ Polynomial coefficients]




Radial Basis Function Deformation

¢ Determine weights and polynomial coefficients

— Solve linear system

®;; = p;(p:) Basis function weights

;z><v§><z>

Il;; = 7i(ps) [Polynomial coefficients]




Radial Basis Function Deformation

¢ Determine weights and polynomial coefficients

— Solve linear system

®;; = ¢i(pi) Basis function weights [Constraints]
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Il;; = 7i(ps) [Polynomial coefficients]




RBF Deformation

+ Smooth and physically plausible
+ Satisfies constraints exactly

+ No control lattice, flexible setup
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Global optimization
Generate novel designs
Robustness to noise

Non-smooth, multi-objective target functions
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Evolutionary Algorithms

Global optimization

Generate novel designs

Robustness to noise

Non-smooth, multi-objective target functions

Computationally expensive
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Evolution Strategies (ES)

¢ Represent solutions as vectors of real numbers

e Create offspring by adding zero mean random vector

e Advantages:
+ Self-adaptation of strategy parameters during optimization
+ Simple incorporation of constraints
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Covariance Matrix Adaptation ES
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Passenger Car Design Optimization

Goal: Improve aerodynamic drag of a simplified Honda Civic
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ion Setups

Deformat
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Fithess Function Evaluation

e Fitness function f: IR? — IR:
f(x) = wyrv1 + wave.
e vy: aerodynamic drag computed by CFD simulation

e uy: volume weight to penalize overly flat shapes
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Results
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Conclusions & Future Work

e Conclusions:
- RBFs: Flexible setup with equivalent or better results
- Strong coupling is important

e Future work:
- Additional methods
- Unified interface
- Synthetic benchmarks
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Thanks

... for your attention.

Questions?
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