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Abstract Morphing an existing simulation mesh according
to updated geometric parameters in the underlying computer-
aided design model is a crucial technique within fully auto-
matic design optimization. By avoiding costly automatic or
even manual meshing, it enables the automatic and paral-
lel generation and evaluation of new design variations, e.g.,
through finite element or computational fluid dynamics sim-
ulations. In this paper, we present a simple yet versatilemethod
for high quality mesh morphing. Building upon triharmonic
radial basis functions, our shape deformations minimize dis-
tortion and thereby implicitly preserve shape quality. More-
over, the same unified code can morph tetrahedral, hexahe-
dral, or arbitrary polyhedralmeshes.We compare ourmethod
to other recently proposed techniques and show that ours
yields superior results in most cases. We analyze how to ex-
plicitly prevent invertedmesh elements by successively split-
ting the deformation into smaller steps. Finally, we investi-
gate the performance of different linear solvers as well as the
use of an incremental least squares solver for the sake of im-
proved scalability.
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1 Introduction

Simulation-based design optimization is becoming a corner-
stone of the product development process of the automo-
tive industry, aircraft construction, and naval architecture.
The adaptation of an existing volumetric simulation mesh
according to an updated computer-aided design (CAD) ge-
ometry is a key component for performing the optimization
in a fully automatic and parallel manner. The importance of
such a component further increases when dealing with com-
plex geometries that prohibit automatic mesh generation and
require manual interaction by an expert instead, or when us-
ing stochastic optimization techniques—such as evolution-
ary algorithms—which typically require the creation and eval-
uation of a large number of design variations in order to find
a feasible solution.

The adaptation of an existing simulation mesh is accom-
plished by using a mesh morphing or mesh warping tech-
nique: Given an initial CAD surfaceG and a volumetric mesh
M of that geometry, a shape variation G 7→ G′ is gener-
ated by changing the geometric embedding of G while keep-
ing its topology fixed. The mesh morphing technique then
adapts the meshM such that the updated versionM′ con-
forms to the updated boundary surface G′. Analogously to
the geometric changes in the CAD model, only the geomet-
ric embedding ofM (i.e., its node positions) is updated in
this process, while the mesh topology (i.e., its connectivity)
stays fixed.

Mesh morphing techniques aim at preserving the ele-
ment quality as much as possible, thereby allowing for as
large as possible geometric changes before inevitably requir-
ing some remeshing due to element inversion. Staten and
coworkers recently proposed and evaluated severalmeshmor-
phing techniques, which they compared with respect to com-
putational performance and element quality on different tetra-
hedral and hexahedral meshes [35].
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Motivated by the work of Staten et al. [35], building on
their results, and contributing to their benchmarking compar-
isons, we present and evaluate a meshless morphing tech-
nique based on triharmonic radial basis functions (RBFs).
Our method yields highly smooth space warps that minimize
distortion and thereby preserve element quality. While being
computationally more expensive, our method offers the fol-
lowing compelling advantages: It is easy to understand and
straightforward to implement; it can be applied to tetrahe-
dral, hexahedral, or general polyhedral meshes; and finally,
it more robustly achieves higher quality results.

2 Related Work

The recent comparison ofmeshmorphingmethods published
by Staten and colleagues [35] constitutes the starting point
for our investigation. Based on a set of test scenarios in-
volving varying complexity and topology the authors bench-
mark six techniques for warping volume meshes. Besides in
the meshing community, mesh morphing or mesh deforma-
tion methods have also been a subject of intensive research
in computer graphics. Even though many of the techniques
stemming from the graphics community are typically only
applied to surface meshes, we concentrate our discussion
on methods which are applicable to volumetric meshes as
well. We can roughly classify morphing approaches from
within both fields into four categories: methods based on
generalized barycentric coordinates, mesh smoothing tech-
niques, mesh-based variational methods that minimize cer-
tain smoothness energies, andmeshless warping approaches.
Most techniques take the updated boundary node positions as
input and compute the new locations of interior nodes from
these boundary constraints.

Approaches based on barycentric coordinates determine
the interior nodes as a linear (affine or convex) combina-
tion of the boundary nodes through a generalization of lin-
ear barycentric interpolation [37]. Examples are Wachspress
coordinates [39], mean value coordinates [11], harmonic co-
ordinates [20], and maximum entropy coordinates [17, 36].
The simplex-linear method of [35], being a generalization of
BMSWEEP [34], as well as its extension to natural neigh-
bor interpolation [33], also belong to this category. While
these approaches typically have simple geometric construc-
tions and therefore are easy to implement and efficient to
compute, the resulting morphs might not be smooth enough
to reliably preserve element quality.

Mesh smoothing methods adjust interior node locations
in order to explicitly optimize mesh element quality [21, 22,
30], where the Mesquite framework [7] offers implemen-
tations based on mean ratio, untangling, and matrix condi-
tion number [21]. In the context of mesh warping, the up-
dated boundary nodes act as fixed constraints while the op-
timization process determines the interior nodes. The mesh

smoothing methods evaluated in [35] worked well for small
geometric changes, but were lacking robustness for larger
deformations. In comparison, the LBWARP method [30], a
weighted Laplacian smoothing based on the log-barrier tech-
nique, gives considerably better results, but is computation-
ally more complex.

Mesh-based variational methods compute smooth har-
monic or biharmonic deformations by solving Laplacian or
bi-Laplacian systems [3, 16], which is numerically more ro-
bust thanmostmesh smoothing techniques. The finite element-
based FEMWARP technique [3], which computes a harmonic
deformation, was generalized from tetrahedra to hexahedra
in [35], and turned out to be the most successful approach
in Staten’s benchmarks. Note that harmonic coordinates [20]
(see above) are closely related to these approaches, since they
are also derived by solving a Laplacian system. The bound-
ary nodes’ harmonic coordinate functions can be thought of
as “response functions” of the Laplacian PDE. While the
morphs produced by mesh-based variational methods tend
to preserve element quality well, they have to be custom-
tailored to each mesh type (e.g., tetrahedral or hexahedral).

In contrast,meshless morphing techniques avoid this lim-
itation by computing a space warp d : IR3 → IR3 that de-
forms thewhole embedding space, thereby implicitly deform-
ing each node of the meshM. After the initial freeform de-
formation (FFD) paper [29], many variants and extensions
have been proposed. We refer the reader to the survey pa-
pers [4, 13, 27], which focus on mathematical formalisms
for the different methods, on the interactive manipulation by
a designer, and on shape deformation in the context of aero-
dynamic design optimization, respectively. However, spline-
based FFD does not offer the same degree of smoothness as
harmonic or biharmonic morphs, and it requires a rather te-
dious lattice setup.

We propose to combine the advantages of meshless ap-
proaches and mesh-based variational methods by using ra-
dial basis functions (RBFs) for meshmorphing [5, 6, 19, 25].
Our RBF space warps are easy to setup and compute, can
handle arbitrary polyhedral meshes, and offer a degree of
smoothness equivalent or even superior to mesh-based vari-
ational techniques. Moreover, we show how to employ the
same approach not only for morphing volumetric simulation
meshes (Section 3), but also for morphing the updated sur-
face node locations (Section 4).

3 RBF Volume Morphing

In this section we describe how to morph volume meshes us-
ing radial basis functions. We note, however, that our tech-
nique is not restricted to this particular application setting.
In fact, the RBF approach is capable to handle arbitrary ge-
ometries whenever it is possible to specify the deformation
as a set of displacements give at certain positions in space.
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The input for the volume morphing consists of three sets
of mesh vertices: Surface nodes {s1, . . . , sm} and interior
volume nodes {v1, . . . ,vn} of the initial meshM, as well
as the updated surface nodes {s′1, . . . , s′m} of M′, where
the si and s′i conform to the CAD geometries G and G′, re-
spectively. The goal is to find updated volume node positions
{v′1, . . . ,v′n}, such that the element quality of the morphed
meshM′ is as good as possible.

On amore abstract level, we can treat the morphing prob-
lem as a scattered data interpolation problem: We search for
a function d : IR3 → IR3 that (i) exactly interpolates the pre-
scribed boundary displacements d(si) = (s′i − si) and (ii)
smoothly interpolates these displacements into the mesh in-
terior. Radial basis functions (RBFs) are well known to be
suitable for solving this type of problem [41]. Using RBFs
we define the deformation function as a linear combination of
radially symmetric kernel functions ϕj(x) = ϕ(‖x− xj‖),
located at centers xj ∈ IR3 and weighted by wj ∈ IR3, plus
a linear polynomial to guarantee linear precision:

d(x) =

m∑
j=1

wjϕj(x) +

4∑
k=1

qkπk(x) , (1)

where {π1, π2, π3, π4} = {x, y, z, 1} is a basis of the space
of linear trivariate polynomials, weighted by coefficientsqk ∈
IR3. Note that the polynomial term is important, since it guar-
antees to find the optimal affine motion (translation, rotation,
scaling) contained in the prescribed displacements si 7→ s′i.

The choice of the kernel function ϕ : IR → IR basically
determines the shape of the interpolant. Commonly used ker-
nels includeGaussians, (inverse)multiquadrics, and polyhar-
monic splines (see Table 1 for an overview). In our appli-
cation we aim for high quality deformations minimizing the
distortion ofmesh elements. Tomeet this goal, we have to use
a sufficiently smooth kernel function. While Gaussian and
multiquadric basis functions provide infinite smoothness, i.e.,
they are C∞ at the center, they require the choice of an ad-
ditional shape parameter (the ε in Table 1). Small values of
ε increase approximation accuracy, but lead to numerically
instabilities, and vice versa. Therefore, finding the optimal
shape parameter for a given radial basis function and the par-
ticular application is a non-trivial task of its own (see [10] for
an overview of different strategies).

Gaussian ϕ(r) = e−(εr)2

Multiquadric ϕ(r) =
√

1 + (εr)2

Inverse multiquadric ϕ(r) = 1/
√

1 + (εr)2

Polyharmonic spline in IRd ϕk(r) =

{
r2k−d, d odd,
r2k−d log(r), d even.

Table 1 Commonly used radial basis functions. For Gaussians and (in-
verse) multiquadrics ε denotes the shape parameter. For the polyhar-
monic splines k denotes the order of smoothness.

Fig. 1 Comparison between a biharmonic (top) and a triharmonic (bot-
tom) deformation of a plane. We displace the golden region, keep the
gray region fixed, and deform the blue region. We place RBF kernels
on all vertices in the golden and gray regions.

In contrast, polyharmonic splines are free of shape pa-
rameters, but only of finite smoothness. Depending on the
application scenario, we have to choose a sufficiently high
degree of smoothness. In IR3 the polyharmonic splineϕk(r) =

r2k−3 is a fundamental solution of the k-th order Laplacian∆k,
such that also the RBF deformation (1) is k-harmonic, i.e.,
∆kd = 0. Being the strong form of a variational energymin-
imization, this is equivalent to d minimizing [41]

∫∫∫
IR3

∥∥∥∥∂kd∂xk

∥∥∥∥2+

∥∥∥∥ ∂kd

∂xk−1∂y

∥∥∥∥2+ . . .+

∥∥∥∥∂kd∂zk

∥∥∥∥2 dx dy dz.
(2)

Following [35] we measure element quality by means
of the minimum scaled Jacobian, i.e., by first-order partial
derivatives. Hence, in order to preserve element quality dur-
ing morphing, we should minimize the change of first-order
derivatives of the elements, and therefore the first-order deriva-
tives of the deformation function. With k = 1 in (2), this is
achieved by the harmonic RBF ϕ(r) = 1/r, but those basis
functions are singular at their centers. The biharmonic spline
ϕ(r) = r is well defined, but not differentiable at the cen-
ter and therefore not smooth enough for our application (see
Figure 1). By choosing ϕ(r) = r3, we obtain a deformation
function that is triharmonic, therefore penalizes third-order
derivatives in (2), and is globally C2 smooth. With these
properties, it is the lowest-order polyharmonic RBF suitable
for our application. Since for numerical robustness a low or-
der is preferrable, we eventually chose triharmonic RBFs for
volumemorphing. Nevertheless we also give comparisons to
other basis functions in terms of element quality and numer-
ical conditioning in Section 5.4.

Satisfying the interpolation constraints d(si) = (s′i−si)
amounts to placing RBF kernels at the constraint positions
(i.e., xj = sj) and finding the coefficients wj and qk by
solving the (m+ 4)× (m+ 4) linear system

AX = B, (3)
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where

A =



ϕ1(s1) · · · ϕm(s1) π1(s1) · · · π4(s1)

...
. . .

...
...

. . .
...

ϕ1(sm) · · · ϕm(sm) π1(sm) · · · π4(sm)

π1(s1) · · · π1(sm) 0 · · · 0

...
. . .

...
...

. . .
...

π4(s1) · · · π4(sm) 0 · · · 0


,

X =
(
w1, . . . ,wm, q1, . . . ,q4

)T
,

and

B =
(

(s′1 − s1), . . . , (s′m − sm), 0, . . . , 0,
)T

.

After solving (3) we can compute the morphed meshM′
by simply evaluating the RBF deformation at each volume
node: v′i = vi + d(vi). This part can easily be parallelized
and therefore is highly efficient. The computationally most
expensive part is the solution of the linear system (3), which
is dense due to the global support of ϕ(r). We discuss the
performance and the scalability of our method in Section 7.

4 Surface Morphing

In order to establish a common baseline for comparison, the
benchmark tests of Staten and colleagues [35] were all based
on the same surface morphing, i.e., they all shared the same
boundary surface nodes forM andM′. However, while the
quality of our RBF volumemorphing alone is already promis-
ing, we point out that the surface morph entirely determines
the volume morph, thereby constituting an upper bound on
the maximum quality achievable. In order to further improve
the quality of our results we propose a high quality surface
morphing method that is also based on polyharmonic radial
basis functions.

Since in our setting the topology of the CAD surface G
stays constant, there is a one-to-one correspondence between
the faces, curves, and corner vertices of G and G′. Staten and
colleagues exploit this fact for morphing curves: For each
curve node ci ∈ M belonging to a curve f : IR → IR3 of
the initial geometry G, they find the parameter value u such
that ci = f(u) and compute themorphed node as c′i = f ′(u),
where f ′ ⊂ G′ is the morphed curve corresponding to f ⊂ G.
The morphed curves then act as boundary constraints for
morphing the surface nodes, which Staten et al. performed
using either mesh smoothing or the weighted residual tech-
nique. Both, however, lead to a certain amount of distortion
or even inverted surfaces triangles, which in turn negatively
impacts the volume morphing. We note, however, that Staten

Ω Ω′

fk f ′k

dk : IR2 → IR2

Fig. 2 Overview of the surface morphing for one face.

and colleagues did not focus on the lower-dimensional sur-
face warp but on a comparison of volume morphing tech-
niques. It is also worth noting that Shontz and Vavasis show
how to employ lower-dimensional variants of their LBWARP
technique for mesh construction and warping in [30].

In our approach we extend the curve morphing idea to
the surface case: For each surface node si we find its corre-
sponding face f : IR2 → IR3 and its (u, v)-parameters, and
define the morphed surface node as the corresponding point
on the morphed face f ′(u, v). We first describe how to find
the (u, v)-parameters of a surface node si, before explaining
the actual mapping from f to f ′.

Given a surface node si, finding its corresponding face f
and (u, v) parameters in theory amount to projecting si onto
each face fk ∈ G and selecting the closest one. Although
most CAD kernels (Open CASCADE [26] in our case) pro-
vide this functionality, in practice these projections are both
computationally intensive and numerically instable for com-
plex, trimmed faces. We address both problems by densely
sampling the CAD surface G, which requires only robust and
efficient evaluations and results in samples pj = fk(uj , vj).
For each surface node si we then find its closest sample point
pj and project si onto fk with (uj , vj) as initial guess. We
perform this search efficiently through space partitioning:
when storing the samples (pj , uj , vj , k) in a kD-tree [28],
finding the closest sample for a given si takes less than 0.01ms
for a highly dense sampling of about 15M sample points. In
our experiments, this approach drastically improved the effi-
ciency and robustness of the projections.

After finding the face f and the (u, v) parameters, we
need to move the node si to the corresponding point on the
morphed CAD face f ′. This part is more challenging than
for the curve case, since the geometric embedding of a face
f : Ω→ IR3 can change in two ways: (i) an adjustment of its
geometric parameters, e.g., spline control points or cylinder
radii, and (ii) a change of its parameter domainΩ, e.g., due to
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Fig. 3 Comparison of element quality in the morphed surface mesh.
While there are distortions in the meshes of Staten et al. [35] (left), our
surface (right) is perfectly aligned to the updated CAD geometry.

adjusted trimming curves. While (i) simply amounts to eval-
uating f ′ instead of f , (ii) requires to morph the parameter
values (u, v) ∈ Ω to (u′, v′) ∈ Ω′.

In order to morph the parameter values to the updated
parametric domain, we exploit the versatility of our approach
and construct a 2D RBF deformation function dk : IR2 →
IR2 for each face fk of the CADmodel (see Figure 2). To this
end we uniformly sample the (u, v)-boundary curves of the
faces fk and f ′k, resulting in 2D point samples {c1, . . . , cn} ∈
Ω and {c′1, . . . , c′n} ∈ Ω′. Constructing a suitable 2D RBF
warp requires only minor changes to the 3D formulation (1).
In contrast to the 3D case, the 2D biharmonic basis function
ϕ2(r) = r2 log(r) is differentiable at the center and there-
fore smooth enough for our scenario. The polynomial part
consists of the basis {π1, π2, π3} = {x, y, 1}, and the co-
efficients wj ,qk are two-dimensional. With these changes,
and replacing si by ci, we solve a linear system analogous
to (3) for computing the RBF warp dk. After performing the
parameter warp (u′, v′) = (u, v)+dk(u, v) we compute the
morphed surface node as s′i = f ′k(u′, v′).

This method is easy to compute and produces high qual-
ity surface warps of minimal parametric distortion, as shown
in Figure 3, which compares our surface morphing to that of
[35]. Thanks to its meshless nature, we can apply our method
to all kinds of faces, such as simple non-trimmed rectangu-
lar faces, trimmed faces with curved boundaries, as well as
faces with trimmed holes (see Bore and Pipe examples in the
next section).

5 Evaluation of Morphing Quality

In this section, we compare our mesh morphing technique
to the results recently published in [35]. The examples in-
clude meshes of varying topology, including structured and
unstructured hexahedral as well as tetrahedral meshes. The

complexity of the models ranges from ∼10-15k vertices for
the Bore and Pipemodels up to∼130k vertices for the Courier
model. The Canister model used in [35] was not available to
us. Since Staten et al. provide a detailed description of the
different geometric parameters in the CAD models and how
they adjust them we do not reproduce them here.

For the sake of a clear representation, we restrict our
comparison to thosemethods that either delivered the best re-
sults (FEMWARP and LBWARP), or that have been recom-
mended by the authors for sake of simplicity and efficiency
(Simplex-linear). In order to ensure comparability of the re-
sults, we also measure element quality based on the scaled
Jacobian as described in [21]. For our RBF volume morph-
ing, we include results for both the original surface node lo-
cations from [35] (denoted RBF) as well as those obtained
by our surface morphing (denoted RBF-S). The results de-
noted by RBF-IQRwere computed using the incremental QR
solver described in Section 7.

Following the benchmarks of [35], we investigate two
different types of morphing: relative and absolute morphing.
In the former case, we incrementally update the mesh from
the initial design to the full parameter change. In the latter
case, we directly warp the initial mesh to the correspond-
ing parameter change. As in the benchmarks of [35] we use
N = 20 steps for both types of morphing. In the following
subsections, we present detailed results for the individual test
cases. In order to give the reader an impression of where in
the meshes the element quality becomes particularly low, we
present selected cut-views of the morphed volume meshes in
Figure 4. After performing an absolute morph to the full pa-
rameter change on both hexahedral and tetrahedral meshes,
we highlight the worst 5% of the elements in red.

5.1 Bore Model

The change of parameters in the Bore model tests the ability
of the different methods to deal with scaling and rotation. An
example morph from the initial mesh to the full parameter
change is shown in Figure 5. As can be seen from this figure,
our method is on par with or better than the FEMWARP and
LBWARP methods. It is important to note that the element
inversion after 75% parameter change in case of the tetrahe-
dral model is due to a defect in the morphed surface mesh
of [35]. By using our more robust surface morph we are able
to perform both the relative and the absolute morph up to a
parameter change of 100% without any inverted elements.

5.2 Pipe Model

The change of parameters in the Pipe model tests the ability
of the different methods to deal with nonlinear stretching.
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Fig. 4 Cut views of the hexahedral (left) and tetrahedral (right) meshes for the Bore (top), Pipe (middle), and Courier (bottom) models after
performing an absolute morph to the full parameter change. We highlight the worst 5% of the elements in red.
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Fig. 5 Morphing results of the Bore model.
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Bore Pipe Courier

Hex Tet Hex Tet Hex

biharmonic 0.985 0.015 0.92 0.018 0.09

triharmonic 0.995 0.016 0.95 0.019 0.045

quadharmonic 0.995 0.016 0.96 0.017 -0.99

Table 2 A comparison of RBFwarps showing themin. scaled Jacobian
after an absolute morph to the full parameter change.

We present the initial and final shapes as well as detailed re-
sults in Figure 6. While our method provides superior results
on the hex model, those on the tetrahedral model are compa-
rable. However, in contrast to other methods ours does not
result in inverted elements at 95% parameter change for the
absolute morphing of the tetrahedral model. Again, the re-
sults obtained using our combined volume and surface mor-
phing are superior.

5.3 Courier Model

The Courier model is the most complex model in our com-
parison. In contrast to previous examples, the hexahedralmesh
of this model is an unstructured one. Especially in case of
the absolute tetrahedral mesh morphing, all methods pre-
sented in [35] result in inverted elements as soon as reaching
a change of parameter values of 65%. In contrast, our method
results in inverted elements only after a parameter change
of 75% (see the results in Figure 7). Unfortunately, due to
a mismatch between CAD geometry and initial tetrahedral
mesh, we could not apply our surface morphing method for
the tetrahedral Courier model.

5.4 Comparison of RBF Warps

In Table 2 we report the resulting element quality for differ-
ent RBFwarps after performing an absolutemorph to the full
parameter change. In all but one case the triharmonic warp
delivers better results than the biharmonic one. The higher-
order quadharmonic RBF (using ϕ4(r) = r5) does not re-
sult in noteworthy improvements. Even worse, in case of the
Courier hex model it even leads to inverted elements due to
numerical instabilities. Investigating the condition number
indeed reveals a drastic increase with the order of the basis
function, being 2.36 for the biharmonic, 2.311 for the trihar-
monic, and 6.315 for the quadharmonic warp.

6 Inversion-free Morphing

In this section we investigate several approaches for prevent-
ing inverted elements in the deformed mesh. As already ob-

served by Staten and colleagues, relative morphing tends to
better preserve element quality compared to absolute mor-
phing. Therefore, one could be inclined trying to avoid in-
verted elements by using smaller and smaller steps of rela-
tive morphing. However, within their approach they use the
relative geometric parameters in the CAD model to generate
the intermediate boundary nodes for the volume morphing.
Therefore, preventing element inversions in a fully automatic
manner is rather complicated in this approach. Another ap-
proach to improve the resulting element quality and to even-
tually prevent inversions is to use a more powerful nonlinear
deformation method such as [32].

A simple and efficient approach for preventing inversions
is to iteratively split the deformation. In [14] that a space de-
formation is guaranteed to be free of self-intersections if (i)
the it has continuous first partial derivatives and (ii) the deter-
minant of its Jacobian is larger than zero. The first criterion
is naturally fulfilled by our smooth RBF warps. The second
one is fulfilled if the displacements to be interpolated are suf-
ficiently small. We therefore use the following procedure to
prevent inversions:We initially perform the full deformation.
If the deformation results in at least one inverted element, we
uniformly split the deformation into n steps, where n is the
current iteration. We repeat this process until no more in-
versions occur. We illustrate this approach schematically in
Figure 8. We note that Shontz and Vavasis follow a similar
procedure in the context of FEMWARP in [31].

The prevention of self-intersections and element inver-
sions under deformation has also been subject to substantial
research [2, 14, 15, 31]. A particularly powerful approach
is the construction and integration of a smooth space-time
vector field, which theoretically guarantees the absence of
intersections and element inversions [2, 12, 24]. In the limit
case of arbitrarily small displacements our splitting approach
is roughly equivalent to vector field-based approaches. In
contrast, however, our method avoids the increased compu-
tational costs for the construction of the space-time vector
field [24], making our method more practical in the current
volume mesh morphing scenario.

We finally emphasize that even a smooth, inversion-free
space warp does not necessarily guarantee the absence of in-
verted elements. Applying the deformation to all mesh nodes
eventually turns the smooth space warp into a piecewise lin-
ear C0 per-element deformation. Therefore, a fundamental
requirement for an inversion-free deformation is a mesh res-
olution sufficiently high to faithfully represent the deforma-
tion field. For a detailed investigation of element inversion
and mesh discretization in the context of the FEMWARP
technique we refer to Shontz and Vavasis [31].
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Fig. 6 Morphing results of the Pipe model.
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Fig. 7 Morphing results of the Courier model.
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Fig. 8 Using splitting to prevent element inversion. In 2D (top) we displace the golden region, keep the gray region fixed, and deform the blue
region. In 3D (bottom) we move a sphere within the tetrahedral mesh of a box. In both cases performing a large deformation in a single step leads
to inverted elements while splitting the deformation into smaller steps leads to a mesh without inverted elements.
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Bore Hex Bore Tet Pipe Hex Pipe Tet Courier Hex Courier Tet

LAPACK dgetrf 8.0 12.0 4.5 8.5 140 483

LAPACK dsytrf 7.1 10.0 3.9 6.9 108 362

MKL dsytrf 2.3 3.4 1.3 2.5 29 89

MAGMA 2.3 3.4 1.3 2.3 22 58

IQR 3.0 7.0 3.3 1.8 104 360

Table 3 Performance comparison of the RBF volume morphing using different solvers for the linear system (3), averaged over five runs. The table
reports morphing times in seconds. The chart depicts performance differences relative to the GPU-based MAGMA solver.
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7 Performance and Scalability

In this section we investigate the performance and the scal-
ability of our method. As already noted in Section 3, the
computationally most expensive part within our technique
is the solution of the linear system (3) for the volume mor-
phing. This linear system is dense due to the global support
of the chosen radial basis functions ϕ(r) = r3, resulting
in an asymptotic complexity of O(m3) when using standard
solvers for dense linear systems.

While there exist sophisticated techniques for efficiently
solving RBF-based systems like (3), such as multipole ex-
pansion, multi-level approximation, or greedy center selec-
tion [8, 25, 41], this was not necessary in all our test cases.
Since most CAD geometries G and their corresponding vol-
ume meshes M are constructed from multiple solid com-
ponents, we can simply perform the volume morphing indi-
vidually for each of these (reasonably small) components. In
all our examples this could be done using a standard linear
solver, e.g., the LU factorization of the LAPACK library [1].

Nevertheless, we investigate in the following how to (i)
improve the performance by using efficient implementations
of standard solvers and (ii) improve the scalability to larger
models using an incremental least squares solver.

Since the linear system (3) is symmetric but not positive
definite, efficient Cholesky-type solvers are not applicable,
leaving us with solvers based on LU and LDLT factoriza-
tions as the default choices. We compared four solver imple-
mentations:

– The general LU decomposition (dgetrf) of LAPACK,
– theLDLT factorization for symmetricmatrices (dsytrf)
of LAPACK,

– the multi-core LDLT decomposition (dsytrf) of the In-
tel Math Kernel Library (MKL) [18],

– theGPU-acceleratedLU decomposition ofMAGMA [38].

We performed all tests on a Dell T7500 workstation with
an Intel Xeon E5645 2.4 GHz CPU and 18GB RAM run-
ningUbuntu Linux 12.04 x86_64.We compiled all codewith
gcc 4.6.3, optimization turned on (using -O3) and debugging
checks disabled (-DNDEBUG). In order to rule out caching and
power saving issues, we averaged the timings over five mor-
phing steps.

The results in Table 3 show that the performance differs
significantly between solvers. The largest differences exist in
case of the Courier model where the MAGMA-based solver
is up to eight times faster than other implementations. The
results for the MKL are almost identical to the MAGMA re-
sults for smaller models, but the difference increases with the
model size. The comparison between LAPACK’s generalLU

and symmetricLDLT factorizations also shows considerable
differences. Unfortunately, specialized symmetric factoriza-
tions were not available in MAGMA.

Despite the impressive performance improvements the
scalability of all these methods is still limited by their time
complexity O(m3) and memory consumption O(m2), pre-
venting their use for high resolution meshes. One can ob-
serve, however, that even for densely tessellated models the
geometric morphs are still rather simple and smooth, so that
a moderate number of RBF kernels is sufficient to represent
the deformation [6]. We can therefore compute the morph by
using only a subset of the surface nodes sj as centersxj . This
turns the interpolation problem (3) into a least squares ap-
proximation problem, where the required number of centers
depends on the complexity of the deformation only—instead
of on the complexity of the mesh.

As an implementation of this concept we use our incre-
mental QR solver (IQR) initially presented in [6]. This solver
starts by fitting the polynomial term of (1) only and then in-
crementally adds more and more RBF kernels ϕj until the
least squares error falls below a user-prescribed threshold.
Below we sketch the main ideas of [6] for completeness.

Using just k basis functions (polynomial and RBFs) in-
stead of the full set of (m + 4) basis functions corresponds
to replacing the quadratic (m + 4) × (m + 4) linear sys-
tem AX = B of (3) by the reduced (m + 4) × k system
AkXk = B, where Ak is composed from the k columns of
A corresponding to the k selected basis functions, and Xk

are their respective coefficients. This over-determined sys-
tem can be solved robustly using the QR factorization:

Ak = QkRk, Xk = R−1k QT
kB. (4)

The main observation of [6] is that computing the QR
factorization of the full matrix A iteratively processes col-
umn by column for k = 1, . . . ,m + 4, and that iteration k
basically computesQk andRk. In addition, the least squares
error ‖AkXk −B‖2 can be determined almost for free with-
out actually having to computeXk. The IQR solver therefore
works similar to a standard QR solver, but can stop as soon
as at iteration k the first k columns of A yield a sufficiently
accurate least squares solution. Since this algorithm simply
chooses the first k columns of A, a suitable re-ordering of
the columns (i.e., of the corresponding basis functions) is
performed in a pre-process. We use a farthest point center
selection strategy, since this can be computed at negligible
cost and guarantees a good matrix condition number [6].

The complexity of solving the least squares system (4) is
O(mk2). Hence, in the worst case that all m + 4 columns
have to be used the complexity still is O(m3) as for all other
solvers. Since the computational overhead compared to a stan-
dard QR solver is negligible, the performance is on par with
standard (CPU-based) solvers even if the morph is complex
and requires a large number of centers (see Courier example
in Table 3). However, for simple deformations, such as the
Bore and Pipe examples in Table 3, the incremental solver
even outperforms the GPU-based MAGMA solver. We note
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that the user-prescribed error might negatively influence the
resulting element quality if it is not small enough, thereby
offering a trade-off between performance and quality.

Comparing the performance of our RBF-based technique
with those investigated by Staten and colleagues shows that
our method is computationally more expensive. However, in
all but one case our method allows to perform an absolute
morph to the full parameter change without resulting in in-
verted elements. Othermethodsmight only reach this goal by
falling back to several steps of relative morphing, thereby be-
coming computationally more expensive than our approach.

8 Conclusions and Future Work

In this paper, we presented a simple and versatile method
for high-quality mesh morphing of both surface and volume
meshes usingRBFs. The smoothness of our triharmonic RBF
morphs leads to similar or superior element quality com-
pared to all techniques evaluated in [35]. The implementation
of our method is straightforward and essentially requires set-
ting up the linear system (3) and solving it using a standard
solver. Therefore, it can be considered significantly easier to
implement than the LBWARPmethod.While being similarly
straightforward to implement as our method, the FEMWARP
technique has to be derived explicitly for each element type.
In contrast, our RBF morphs are highly flexible, since the
same unified code can morph arbitrary geometries in arbi-
trary dimensions.

We also investigated solutions to potential issues aris-
ing in mesh morphing for design optimization. We presented
a simple and efficient technique for constructing inversion-
free deformations. Furthermore, we have illustrated how the
performance of our method can be drastically improved by
employing efficient GPU-based linear solvers or incremen-
tal least squares solvers. Another direction for performance
improvements is parallelization. The basic requirement for
a parallel execution of our method is a decomposition of
the mesh into separate components with matching interfaces,
which is widespread task in parallel computing.

A promising direction for future work is to compare the
results of our globally supported RBFs with those of com-
pactly supported basis functions [41].While these basis func-
tions have the advantage that the linear systems become sparse
and hence allows for more efficient storage and solvers, one
has to explicitly incorporate the minimization of a smooth-
ness energy like (2) in order to obtain high-quality deforma-
tions. As shown in [40], such an approach is capable to pro-
duce high-quality results while being computationally more
efficient thanmethods based on globally supported basis func-
tions.
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