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• Optimize
– Centroidal Voronoi tessellations
– Numerical robustness
– Polygonal FEM
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• Optimize
– Centroidal Voronoi tessellations
– Numerical robustness
– Polygonal FEM

• Numerical robustness:
– Problem dependence: 2D Poisson problem
– Element shape

• Mesh optimization
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Polygonal Finite Elements

• FEM on polygonal or polyhedral meshes

• Advantages:
– Flexible modeling
– Fracture, cutting
– Topology optimization
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Martin et al. / Polyhedral Finite Elements Using Harmonic Basis Functions

Figure 7: The bunny model is embedded into an adaptively refined, octree-like simulation mesh, shown on the left. The degrees

of freedom are concentrated on the surface, wasting little computing power on the less interesting, invisible interior.

Figure 8: Dynamic, stress-based refinement of a hexahedral bar model, using 1-to-2 splits for the bending deformation and

1-to-8 subdivision for twisting. The bar is constrained at both ends, the color visualizes the maximum principal stress.

same time as for standard FEM, with only a slight increase

in matrix density in case of complex polyhedra with high

vertex count. Solving for and numerically integrating shape

functions N
e

i is considerably more expensive than for sim-

ple linear tetrahedra or trilinear hexahedra. Note, however,

that general polyhedral elements are employed in irregular

regions of adaptivity and cutting only, whereas in regular

regions we can use standard elements. Our approach there-

fore trades the combinatorial complexity of remeshing for

the computational complexity of polyhedral elements.

9. Conclusion

We have introduced an FEM framework for arbitrary poly-

hedral elements based on harmonic basis functions, and pro-

posed the method of fundamental solutions as a simple and

flexible method for computing these basis functions. Being

able to use general polyhedral elements in FEM simulations

considerably simplifies topological changes of the simula-

tion domain, as illustrated for adaptive mesh generation, dy-

namic refinement, and progressive cutting.

While we demonstrated harmonic polyhedral elements

mainly in the context of corotated linear elasticity, it is im-

portant to note that they can as well be used with nonlin-

ear strain measures and nonlinear material behavior, which

therefore constitutes an interesting direction for future work.

Furthermore, extending our approach to both adaptive and

hierarchical discretizations and solvers has the potential to

improve runtime performance of the simulation.
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Figure 9: Left: Progressive cutting of a hexahedral bar

model. Right: Cutting a tetrahedral dinosaur mesh. Tetra-

hedra are visualized in yellow, general polyhedra in blue.

Scene Start #N/#E End #N/#E tinit tsolve ttotal

Collision (Fig. 5) 274 / 153 274 / 153 105 5.2 20

Bunny (Fig. 7) 4.8k / 3k 4.8k / 3k 59 221 247

Bending (Fig. 8) 99 / 40 256 / 88 302 1.6 60

Twisting (Fig. 8) 99 / 40 1392 / 719 170 37 276

Bar Cut (Fig. 9) 99 / 40 391 / 63 688 3 235

Dino Cut (Fig. 9) 5.6k / 19k 9.3k / 21k 48 113 752

Table 1: Statistics and timinigs for the examples shown in

this paper. We list initial and final number of nodes (#N) and

elements (#E), avg. time to compute N
e

i and setup Ke per

polyhedral element, and for the linear solve per time-step

(both [ms]), and the total simulation time [s].

c� 2008 The Author(s)

Journal compilation c� 2008 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 21. Solutions for the cantilever beam with circular support based on (a) 10 000 Voronoi elements
and (b) 10 220 T 6 elements. The final compliance value is shown below each result.

simplex geometry on topology optimization solutions. This is accomplished by means of polyg-
onal meshes based on Voronoi tessellations, which in addition to possessing higher degree of
geometric isotropy allow for greater flexibility in discretization without introducing numerical
instabilities/pathologies.

Most two-dimensional investigations in topology optimization are based on triangular elements
of three nodes (T 3) and bilinear quadrilateral (Q4) [48]. For n=3 and n=4 the resulting polygonal

Copyright 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 82:671–698
DOI: 10.1002/nme

[Sukumar & Bolander, 2009] [Martin et al, 2008] [Talischi et al, 2010]
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• Find                    such that

•    is the know solution

• Approximate u by basis functions Ni interpolating 
nodal DoFs ui

2D Poisson Problem

4

ū

u : IR2 → IR

−∆u = f in Ω ⊂ IR2

u = ū on ∂Ω

u(x) ≈
n�

i=1

uiNi(x)
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Linear System

Ku = f with Kij =

�

Ω
∇Ni ·∇Nj dΩ
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• Inserting the approximation into the weak form 
leads to linear system:
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• Inserting the approximation into the weak form 
leads to linear system:

• Condition number of K:
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κ = λmax/λmin

Linear System

Ku = f with Kij =

�

Ω
∇Ni ·∇Nj dΩ
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• Barycentric coordinates
– Partition of unity
– Linear precision
– Lagrange property
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Ni(xj) = δi,j

Triangular Basis Functions

x

xi

�3
i=1 Nixi = x

�3
i=1 Ni(x) = 1
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• Generalized barycentric coordinates
– Partition of unity
– Linear precision
– Lagrange property
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x

xi

�n
i=1 Nixi = x

�n
i=1 Ni(x) = 1

Ni(xj) = δi,j

Polygonal Basis Functions
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• Centroidal Voronoi tessellations (CVTs)
– Convex & well-shaped elements

• Interleaved refinement & Lloyd relaxation
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Centroidal Voronoi Tessellations
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Centroidal Voronoi Tessellations
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Delaunay 
Triangulation

CVT Ours

16 4.03061 59 35.7173 59 13.5157
57 12.3116 164 139.163 164 72.1184
138 24.4565 338 252.092 338 47.4407
554 96.1559 1225 1171.01 1225 169.729
619 101.099 1364 1051.31 1364 184.013
727 118.448 1595 781.625 1595 264.967
1113 178.303 2417 2294.64 2417 324.847
1272 208.538
1517 247.346
1815 290.158
1932 306.283
2289 377.726
2605 419.45
3004 512.529
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Short Edges in CVTs
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• Linear interpolation on the edges

• Short edge: Large gradient

• Gradients enter stiffness matrix

• Large condition number

11

Short Edges & Conditioning

Kij =

�
∇Ni ·∇Nj
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Mesh Optimization
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?
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Delaunay Triangulation & Voronoi Diagram
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Circumcenter = Voronoi vertex
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Short Edges in CVTs
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Short edge = spatially close circumcenters
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Short Edges in CVTs
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Short edge = spatially close circumcenters
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• Push circumcenter as far into the triangle as 
possible

Key Idea
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• Push circumcenter as far into the triangle as 
possible

Key Idea
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• Push circumcenter as far into the triangle as 
possible

• “As interior as possible”: Incenter

Key Idea
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Energy Setup

• Energy depending on Delaunay 
vertices vi:
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Energy Setup

• Energy depending on Delaunay 
vertices vi:

16

E(v1, . . . ,vm) =
1

2

�

t∈T
d2t
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d

Energy Setup

• Energy depending on Delaunay 
vertices vi:

• Euler’s triangle formula:

16

E(v1, . . . ,vm) =
1

2

�

t∈T
d2t

d2 = R(R− 2r)

r

R

d
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d

Energy Setup

• Energy depending on Delaunay 
vertices vi:

• Euler’s triangle formula:

• Circumcircle & incircle radius:

16

E(v1, . . . ,vm) =
1

2

�

t∈T
d2t

d2 = R(R− 2r)

R =
abc

4A
and r =

2A

a+ b+ c

r

R

d

ab

c

r

R

A d
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Energy Minimization

• Global optimization

• DoF: Vector V of Delaunay vertex positions

• Iterative gradient descent:

• Determine step-size h using bisection

17

V(k+1) ← V(k) − h∇E(V(k))
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Gradient Computation

• Gradient of E:

18

ab

cva vb

vc

r

R

A
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Gradient Computation

• Gradient of E:

18

ab

cva vb

vc

r

R

A∂E

∂va
=

�

t∈T

�
(Rt − rt)

∂Rt

∂va
−Rt

∂rt
∂va

�
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Gradient Computation

• Gradient of E:

• Circumcircle & incircle radius gradients:

18

∂R

∂va
= R

�
1

c2
(va − vb) +

1

b2
(va − vc)−

1

2A
(vc − vb)

⊥
�

∂r

∂va
=

−2

(a+ b+ c)2

�
A

c
(va − vb) +

A

b
(va − vc)−

a+ b+ c

2
(vc − vb)

⊥
�

ab

cva vb

vc

r

R

A∂E

∂va
=

�

t∈T

�
(Rt − rt)

∂Rt

∂va
−Rt

∂rt
∂va

�
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Boundary Treatment I

• Boundary:
– Keep original input vertices 

fixed
– Optimize refined vertices

• Project gradients to straight 
line segment

19
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Boundary Treatment II

• Twice the weight for boundary triangles:
– Short edges due to truncation
– Conforming Gabriel property
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Preprocessing

• Equilateral triangles are the minima of 
the energy

• Only possible around vertices with 
valence 6 (4 on the boundary)

• Improve valences towards the 
optimum by edge flips

21

v1

v2

v3

v4
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Algorithm Overview

22

1. Flip edges to improve vertex valence

2. Iteratively minimize energy:
a) Compute gradient
b) Determine step size
c) Update vertex positions

3. Re-establish Delaunay property
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Results

• Condition number before and after optimization

• Red elements: Edge < 5% of sizing
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• A-shape, 1799 triangles, time < 1 second

Simple Mesh

24

CVT: 421 Our Method: 75
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Complex Domain, Graded Mesh
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• Lake Superior, 4036 triangles, graded mesh, 
time < 1 second

CVT: 371877

Our Method: 190
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Large & Heavily Graded Mesh
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• Mesh generated from a photo, 113196 triangles, 
time < 1 minute

CVT: 354630 Our Method: 44208
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Numerical Robustness

• Comparison with triangular meshes
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• Edge collapse (EC), Laplacian smoothing (LS)

Comparison

28

Shape Ours EC LS
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190 200k 1.2m
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• Edge collapse (EC), Laplacian smoothing (LS)

• Drawbacks of EC & LS:
– Elements no longer as well-shaped
– No more dual Delaunay triangulation
– No valid Voronoi diagram

Comparison

28

Shape Ours EC LS
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44k 350k 40k
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Well-Centered Triangulations

29

• Each triangle contains its circumcenter

VanderZee et al., 2010 Our Method
Energy

Norm
Minimization

Preprocess

Result

Distance of vertices to 
opposite edges of incident 
triangles, normalized by 
circumradii

Distance between 
circumcenter and 
incenter

Lp-Norm (p=4, 6, 8, 10) Simple L2-Norm

Conjugate gradients, 
sophisticated line search, 
approximated gradients

Gradient descent, 
bisection line search, 
analytical gradients

Sophisticated multi-stage 
process

Edge flips only

Completely well-centered 
triangulation

Well-centered except 
~1%

29



Well-Centered Triangulations

29

• Each triangle contains its circumcenter

VanderZee et al., 2010 Our Method
Energy

Norm
Minimization

Preprocess

Result

Distance of vertices to 
opposite edges of incident 
triangles, normalized by 
circumradii

Distance between 
circumcenter and 
incenter

Lp-Norm (p=4, 6, 8, 10) Simple L2-Norm

Conjugate gradients, 
sophisticated line search, 
approximated gradients

Gradient descent, 
bisection line search, 
analytical gradients

Sophisticated multi-stage 
process

Edge flips only

Completely well-centered 
triangulation

Well-centered except 
~1%

29



Well-Centered Triangulations

29

• Each triangle contains its circumcenter

VanderZee et al., 2010 Our Method
Energy

Norm
Minimization

Preprocess

Result

Distance of vertices to 
opposite edges of incident 
triangles, normalized by 
circumradii

Distance between 
circumcenter and 
incenter

Lp-Norm (p=4, 6, 8, 10) Simple L2-Norm

Conjugate gradients, 
sophisticated line search, 
approximated gradients

Gradient descent, 
bisection line search, 
analytical gradients

Sophisticated multi-stage 
process

Edge flips only

Completely well-centered 
triangulation

Well-centered except 
~1%

29



Well-Centered Triangulations

29

• Each triangle contains its circumcenter

VanderZee et al., 2010 Our Method
Energy

Norm
Minimization

Preprocess

Result

Distance of vertices to 
opposite edges of incident 
triangles, normalized by 
circumradii

Distance between 
circumcenter and 
incenter

Lp-Norm (p=4, 6, 8, 10) Simple L2-Norm

Conjugate gradients, 
sophisticated line search, 
approximated gradients

Gradient descent, 
bisection line search, 
analytical gradients

Sophisticated multi-stage 
process

Edge flips only

Completely well-centered 
triangulation

Well-centered except 
~1%

29



Well-Centered Triangulations

29

• Each triangle contains its circumcenter

VanderZee et al., 2010 Our Method
Energy

Norm
Minimization

Preprocess

Result

Distance of vertices to 
opposite edges of incident 
triangles, normalized by 
circumradii

Distance between 
circumcenter and 
incenter

Lp-Norm (p=4, 6, 8, 10) Simple L2-Norm

Conjugate gradients, 
sophisticated line search, 
approximated gradients

Gradient descent, 
bisection line search, 
analytical gradients

Sophisticated multi-stage 
process

Edge flips only

Completely well-centered 
triangulation

Well-centered except 
~1%

29



Conclusion & Outlook

• Simple & efficient optimization to 
remove short edges from CVTs

• Significantly improves stiffness matrix 
conditioning

• Preserves element shape and grading

• Outlook:
– Well-centered triangulations
– Implementation in 3D
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