Optimizing Voronoi Diagrams for Polygonal Finite Element Computations

Daniel Sieger & Mario Botsch Bielefeld University

Pierre Alliez INRIA Sophia-Antipolis

Outline

Outline

- Optimize
 - Centroidal Voronoi tessellations
 - Numerical robustness
 - Polygonal FEM

Outline

- Optimize
 - Centroidal Voronoi tessellations
 - Numerical robustness
 - Polygonal FEM
- Numerical robustness:
 - Problem dependence: 2D Poisson problem
 - Element shape
- Mesh optimization

Polygonal Finite Elements

- FEM on polygonal or polyhedral meshes
- Advantages:
 - Flexible modeling
 - Fracture, cutting
 - Topology optimization

[Sukumar & Bolander, 2009]

[Martin et al, 2008]

[Talischi et al, 2010]

2D Poisson Problem

• Find $u \colon \mathbb{R}^2 \to \mathbb{R}$ such that

$$-\Delta u = f \quad \text{in } \Omega \subset \mathbb{R}^2$$
$$u = \bar{u} \quad \text{on } \partial \Omega$$

- \bar{u} is the know solution
- Approximate u by basis functions N_i interpolating nodal DoFs u_i

$$u(\mathbf{x}) \approx \sum_{i=1}^{n} u_i N_i(\mathbf{x})$$

Linear System

$$\mathbf{Ku} = \mathbf{f} \quad \text{with } \mathbf{K}_{ij} = \int_{\Omega} \nabla N_i \cdot \nabla N_j \, \mathrm{d}\Omega$$

Linear System

 Inserting the approximation into the weak form leads to linear system:

$$\mathbf{Ku} = \mathbf{f} \quad \text{with } \mathbf{K}_{ij} = \int_{\Omega} \nabla N_i \cdot \nabla N_j \, \mathrm{d}\Omega$$

Linear System

 Inserting the approximation into the weak form leads to linear system:

$$\mathbf{Ku} = \mathbf{f} \quad \text{with } \mathbf{K}_{ij} = \int_{\Omega} \nabla N_i \cdot \nabla N_j \, \mathrm{d}\Omega$$

• Condition number of K:

$$\kappa = \lambda_{\rm max}/\lambda_{\rm min}$$

Triangular Basis Functions

- Barycentric coordinates
 - Partition of unity $\sum_{i=1}^{3} N_i(\mathbf{x}) = 1$ Linear precision $\sum_{i=1}^{3} N_i \mathbf{x}_i = \mathbf{x}$
 - Lagrange property $N_i(\mathbf{x}_i) = \delta_{i,j}$

Polygonal Basis Functions

- Generalized barycentric coordinates
 - Partition of unity $\sum_{i=1}^{n} N_i(\mathbf{x}) = 1$
 - Linear precision $\sum_{i=1}^{n} N_i \mathbf{x}_i = \mathbf{x}$
 - Lagrange property $N_i(\mathbf{x}_j) = \delta_{i,j}$

- Centroidal Voronoi tessellations (CVTs)
 - Convex & well-shaped elements
- Interleaved refinement & Lloyd relaxation

- Centroidal Voronoi tessellations (CVTs)
 - Convex & well-shaped elements
- Interleaved refinement & Lloyd relaxation

- Centroidal Voronoi tessellations (CVTs)
 - Convex & well-shaped elements
- Interleaved refinement & Lloyd relaxation

- Centroidal Voronoi tessellations (CVTs)
 - Convex & well-shaped elements
- Interleaved refinement & Lloyd relaxation

- Centroidal Voronoi tessellations (CVTs)
 - Convex & well-shaped elements
- Interleaved refinement & Lloyd relaxation

- Centroidal Voronoi tessellations (CVTs)
 - Convex & well-shaped elements
- Interleaved refinement & Lloyd relaxation

- Centroidal Voronoi tessellations (CVTs)
 - Convex & well-shaped elements
- Interleaved refinement & Lloyd relaxation

- Centroidal Voronoi tessellations (CVTs)
 - Convex & well-shaped elements
- Interleaved refinement & Lloyd relaxation

Experimental Comparison

Experimental Comparison

Condition Number 3000 2250 1500 750 0 1500 2250 3000 750 0 **Degrees of Freedom**

- **Delaunay Triangulation**
- CVT

Short Edges in CVTs

Short Edges & Conditioning

- Linear interpolation on the edges
- Short edge: Large gradient
- Gradients enter stiffness matrix

$$\mathbf{K}_{ij} = \int \nabla N_i \cdot \nabla N_j$$

Large condition number

Mesh Optimization

Delaunay Triangulation & Voronoi Diagram

Short Edges in CVTs

Short edge = spatially close circumcenters

Short Edges in CVTs

Short edge = spatially close circumcenters

 Push circumcenter as far into the triangle as possible

 Push circumcenter as far into the triangle as possible

 Push circumcenter as far into the triangle as possible

• "As interior as possible": Incenter

Energy depending on Delaunay vertices v_i:

Energy depending on Delaunay vertices v_i:

$$E(\mathbf{v}_1, \dots, \mathbf{v}_m) = \frac{1}{2} \sum_{t \in \mathcal{T}} d_t^2$$

Energy depending on Delaunay vertices v_i:

$$E(\mathbf{v}_1, \dots, \mathbf{v}_m) = \frac{1}{2} \sum_{t \in \mathcal{T}} d_t^2$$

• Euler's triangle formula:

$$d^2 = R(R - 2r)$$

	r
	$\mathbf{>}$
R	

Energy depending on Delaunay vertices v_i:

$$E(\mathbf{v}_1, \dots, \mathbf{v}_m) = \frac{1}{2} \sum_{t \in \mathcal{T}} d_t^2$$

• Euler's triangle formula:

$$d^2 = R(R - 2r)$$

• Circumcircle & incircle radius:

$$R = \frac{abc}{4A}$$
 and $r = \frac{2A}{a+b+c}$

Energy Minimization

- Global optimization
- DoF: Vector V of Delaunay vertex positions
- Iterative gradient descent:

$$\mathbf{V}^{(k+1)} \leftarrow \mathbf{V}^{(k)} - h \,\nabla E(\mathbf{V}^{(k)})$$

• Determine step-size *h* using bisection

Gradient Computation

• Gradient of *E*:

Gradient Computation

• Gradient of *E*:

$$\frac{\partial E}{\partial \mathbf{v}_a} = \sum_{t \in \mathcal{T}} \left[(R_t - r_t) \frac{\partial R_t}{\partial \mathbf{v}_a} - R_t \frac{\partial r_t}{\partial \mathbf{v}_a} \right]$$

Gradient Computation

• Gradient of *E*:

$$\frac{\partial E}{\partial \mathbf{v}_a} = \sum_{t \in \mathcal{T}} \left[(R_t - r_t) \frac{\partial R_t}{\partial \mathbf{v}_a} - R_t \frac{\partial r_t}{\partial \mathbf{v}_a} \right]$$

Circumcircle & incircle radius gradients:

$$\frac{\partial R}{\partial \mathbf{v}_a} = R \left[\frac{1}{c^2} \left(\mathbf{v}_a - \mathbf{v}_b \right) + \frac{1}{b^2} \left(\mathbf{v}_a - \mathbf{v}_c \right) - \frac{1}{2A} \left(\mathbf{v}_c - \mathbf{v}_b \right)^{\perp} \right]$$

$$\frac{\partial r}{\partial \mathbf{v}_a} = \frac{-2}{(a+b+c)^2} \left[\frac{A}{c} \left(\mathbf{v}_a - \mathbf{v}_b \right) + \frac{A}{b} \left(\mathbf{v}_a - \mathbf{v}_c \right) - \frac{a+b+c}{2} \left(\mathbf{v}_c - \mathbf{v}_b \right)^{\perp} \right]$$

18

 \mathbf{V}_{C}

С

R

 \mathbf{v}_a

a

 \mathbf{v}_b

- Boundary:
 - Keep original input vertices fixed
 - Optimize refined vertices
- Project gradients to straight line segment

- Twice the weight for boundary triangles:
 - Short edges due to truncation
 - Conforming Gabriel property

- Twice the weight for boundary triangles:
 - Short edges due to truncation
 - Conforming Gabriel property

- Twice the weight for boundary triangles:
 - Short edges due to truncation
 - Conforming Gabriel property

- Twice the weight for boundary triangles:
 - Short edges due to truncation
 - Conforming Gabriel property

Preprocessing

- Equilateral triangles are the minima of the energy
- Only possible around vertices with valence 6 (4 on the boundary)
- Improve valences towards the optimum by edge flips

Algorithm Overview

- 1. Flip edges to improve vertex valence
- 2. Iteratively minimize energy:
 - a) Compute gradient
 - b) Determine step size
 - c) Update vertex positions
- 3. Re-establish Delaunay property

Results

- Condition number before and after optimization
- Red elements: Edge < 5% of sizing

Simple Mesh

• A-shape, 1799 triangles, time < 1 second

Complex Domain, Graded Mesh

 Lake Superior, 4036 triangles, graded mesh, time < 1 second

Large & Heavily Graded Mesh

 Mesh generated from a photo, 113196 triangles, time < 1 minute

CVT: 354630

Our Method: 44208

Numerical Robustness

Comparison with triangular meshes

Numerical Robustness

Comparison with triangular meshes

Comparison

• Edge collapse (EC), Laplacian smoothing (LS)

Shape	Ours	EC	LS
A	75	66	43
	190	200k	1.2m
	44k	350k	40k

Comparison

• Edge collapse (EC), Laplacian smoothing (LS)

Shape	Ours	EC	LS
A	75	66	43
	190	200k	1.2m
	44k	350k	40k

- Drawbacks of EC & LS:
 - Elements no longer as well-shaped
 - No more dual Delaunay triangulation
 - No valid Voronoi diagram

• Each triangle contains its circumcenter

	VanderZee et al., 2010	Our Method
Energy	Distance of vertices to opposite edges of incident triangles, normalized by circumradii	Distance between circumcenter and incenter

• Each triangle contains its circumcenter

	VanderZee et al., 2010	Our Method
Energy	Distance of vertices to opposite edges of incident triangles, normalized by circumradii	Distance between circumcenter and incenter
Norm	L ^p -Norm (p=4, 6, 8, 10)	Simple <i>L</i> ² -Norm

• Each triangle contains its circumcenter

	VanderZee et al., 2010	Our Method
Energy	Distance of vertices to opposite edges of incident triangles, normalized by circumradii	Distance between circumcenter and incenter
Norm	L ^p -Norm (p=4, 6, 8, 10)	Simple <i>L</i> ² -Norm
Minimization	Conjugate gradients, sophisticated line search, approximated gradients	Gradient descent, bisection line search, analytical gradients

• Each triangle contains its circumcenter

	VanderZee et al., 2010	Our Method
Energy	Distance of vertices to opposite edges of incident triangles, normalized by circumradii	Distance between circumcenter and incenter
Norm	L ^p -Norm (p=4, 6, 8, 10)	Simple <i>L</i> ² -Norm
Minimization	Conjugate gradients, sophisticated line search, approximated gradients	Gradient descent, bisection line search, analytical gradients
Preprocess	Sophisticated multi-stage process	Edge flips only

• Each triangle contains its circumcenter

	VanderZee et al., 2010	Our Method
Energy	Distance of vertices to opposite edges of incident triangles, normalized by circumradii	Distance between circumcenter and incenter
Norm	L ^p -Norm (p=4, 6, 8, 10)	Simple <i>L</i> ² -Norm
Minimization	Conjugate gradients, sophisticated line search, approximated gradients	Gradient descent, bisection line search, analytical gradients
Preprocess	Sophisticated multi-stage process	Edge flips only
Result	Completely well-centered triangulation	Well-centered except ~1%

- Simple & efficient optimization to remove short edges from CVTs
- Significantly improves stiffness matrix conditioning
- Preserves element shape and grading
- Outlook:
 - Well-centered triangulations
 - Implementation in 3D

