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Shape Deformation & Design Optimization

Common target designs are sheet metal surfaces
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Mesh-Based Surface Deformation



Thin Shell Deformation 1

• Physically-inspired technique suitable for sheet metal surfaces
• Flexible modeling of material behavior
• Based on the minimization of stretching and bending energies

1. Botsch et al., On Linear Variational Surface Deformation Methods, Trans. on Visualization and Computer Graphics, 2008
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Thin Shell Deformation

Measure stretching and bending by 1st and 2nd order partial derivatives
of the displacement function 𝒅∶ 𝑆 → ℝ3

𝐸stretch[𝒅] = ∫
u�
‖∇𝒅(𝒙)‖2 d𝒙

𝐸bend[𝒅] = ∫
u�
‖Δ𝒅(𝒙)‖2 d𝒙

𝐸fix[𝒅] = ∫
ℋ∪ℱ
‖𝒅(𝒙) − ̄𝒅(𝒙)‖2 d𝒙

ℱ ℋ 𝒟
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Surface-Based Discretization

• Discretize on the mesh using standard differential operators 2

𝐸stretch[𝒅ℎ] = ∑
𝒙𝑖∈u�
𝐴𝑖 ‖∇𝒅𝑖‖2

𝐸bend[𝒅ℎ] = ∑
𝒙𝑖∈u�
𝐴𝑖 ‖Δ𝒅𝑖‖2

𝐸fix[𝒅ℎ] = ∑
𝒙𝑖∈ℋ∪ℱ

𝐴𝑖 ‖𝒅𝑖 − ̄𝒅𝑖‖
2

Ô Solve a linear system:

(𝑤𝑠𝑮𝑇𝑮 + 𝑤𝑏𝑳𝑇𝑳 + 𝑤𝑓𝑭𝑇𝑭)𝒅 = 𝑤𝑓𝑭𝑇𝑭 ̄𝒅

2. Meyer et al., Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, Visualization and Mathematics, 2003
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Limitations

• Assumption: Surface 𝒮 is a proper triangle mesh
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SpaceDeformationMethods



Space Deformation Methods

• Instead of deforming the surface 𝒮, deform embedding space 𝛺
Disconnected components
Robustness against defects
Representation independence

• Construct a space deformation function 𝒅∶ 𝛺 ⊂ ℝ3 → ℝ3

– Use meshless approximation methods
– Represent 𝒅 by basis functions 𝜑𝑗 located at centers 𝒄𝑗:

𝒅(𝒙) =
𝑘

∑
𝑗=1
𝒘𝑗𝜑𝑗(𝒙)

• Questions:

– What basis functions to choose?
– Where to place basis functions?
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Surface Sampling

Goal: Generate uniformly distributed points 𝒄𝑗 on the surface

1. Dense random sampling of each mesh face

2. Farthest point selection

3. Lloyd relaxation (k-means clustering)
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Subspace Surface Deformation

• What basis functions 𝜑𝑗 to choose?

• Goal: Achieve same modeling flexibility as surface deformation
• Ground truth: Combine surface energy with space deformation
• Express 𝒅 through coefficients 𝒘 and subspace matrix 𝜱

𝒅 = 𝜱𝒘 with 𝜱𝑖𝑗 = 𝜑𝑗(𝒙𝑖)

• Leads to a modified linear system:

𝜱𝑇 (𝑤𝑠𝑮𝑇𝑮 + 𝑤𝑏𝑳𝑇𝑳 + 𝑤𝑓𝑭𝑇𝑭)𝜱𝒘 = 𝜱𝑇 (𝑤𝑓𝑭𝑇𝑭 ̄𝒅)
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Subspace Surface Deformation

• Global triharmonic radial basis functions (RBFs)

𝜑𝑗(𝒙) = ‖𝒙 − 𝒄𝑗‖
3

• Good results for bending

, bad results for stretching

• Global support→ dense linear systems
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Subspace Surface Deformation

• Compactly supported RBFs

𝜑𝑗(𝒙) = 𝜑 (‖𝒙 − 𝒄𝑗‖) = 𝜑(𝑟) = {
(1 − 𝑟)4(4𝑟 + 1) , 𝑟 < 𝜎 ,
0 , otherwise .

• Large support→ dense linear system, good results
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Subspace Surface Deformation

• Moving Least Squares (MLS) basis functions3

𝜑𝑗(𝒙) = 𝒑(𝒙)𝑇𝑴−1(𝒙)𝒑(𝒄𝑗)𝑤(𝒙 − 𝒄𝑗)

• More complex form, inversion of𝑴 required

3. Fries et al., Classification and Overview of Meshfree Methods, Technical Report, TU Braunschweig, 2003
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Subspace Surface Deformation
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Volumetric SpaceDeformation



Volumetric Space Deformation

• Goal: Fully space-based discretization of stretching and bending
energies using MLS approximation

• Replace vertex-based integration over the surface 𝒮 with purely
space-based integration method

• Use Lloyd-based sampling to determine integration points 𝒒𝑖
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Volumetric Space Deformation

• Evaluate gradients and Laplacians of 𝜑𝑗 at integration points 𝒒𝑖:

𝐸stretch =
𝑁

∑
𝑖=1
𝑉𝑖 ‖∇𝒅(𝒒𝑖)‖2 =

𝑁

∑
𝑖=1
𝑉𝑖 ‖
𝑘

∑
𝑗=1
𝒘𝑗∇𝜑𝑗(𝒒𝑖)‖

2

𝐸bend =
𝑁

∑
𝑖=1
𝑉𝑖 ‖Δ𝒅(𝒒𝑖)‖2 =

𝑁

∑
𝑖=1
𝑉𝑖 ‖
𝑘

∑
𝑗=1
𝒘𝑗Δ𝜑𝑗(𝒒𝑖)‖

2

• Leads to a modified linear system

(𝑤𝑠𝑮𝑇𝑮 + 𝑤𝑏𝑳̃𝑇𝑳̃ + 𝑤𝑓𝜱𝑇𝑭𝑇𝑭𝜱)𝒘 = 𝑤𝑓𝜱𝑇𝑭𝑇𝑭 ̄𝒅
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Volumetric Space Deformation

• Space-based discretization

• Surface-based discretization
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Constrained SpaceDeformation



Geometric Constraints

• Design prototypes contain important geometric features
– Planar components
– Circular couplings or wheelhouses
– Characteristic feature lines

• Deforming the design during optimization distorts features
Impaired functionality
Violated production limitations

• Classical solution: Add penalty terms to the cost function
Creation of infeasible designs
Costly evaluation (e.g., CFD)

22
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Geometric Constraints

• Our approach: Prevent distortion of features by incorporating
geometric constraints into the deformation

Only create feasible designs
Avoid unnecessary performance evaluations

• Constrained deformation techniques
Most methods are surface-based
Projection-based constraints
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Geometric Constraints

• Our approach: Prevent distortion of features by incorporating
geometric constraints into the deformation

Only create feasible designs
Avoid unnecessary performance evaluations

• Constrained deformation techniques
Most methods are surface-based
Projection-based constraints4

4. Bouaziz et al., Shape-Up: Shaping Discrete Geometry with Projections, Computer Graphics Forum, 2012
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Projection-Based Constraints

• Define projection operators 𝑃𝑐: Plane, circle, ...
• Minimize deviation from prescribed constraints

𝐸constr(𝒙) =
𝑠

∑
𝑐=1
‖𝒙 − 𝑃𝑐(𝒙)‖2

• Projections 𝑃𝑐 typically are nonlinear functions of 𝒙
Ô Minimize 𝐸constr by iterative alternating optimization

24
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Geometric Constraint Examples

Fundamental geometric constraints: Planarity, circularity, feature lines
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Fundamental geometric constraints: Planarity, circularity, feature lines
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Volume Deformation Examples

Comparison to previous results5

• Original mesh quality: 0.98
• After RBF deformation: 0.951
• Using our new method: 0.954

ℳ

𝒅∶ ℝ3 → ℝ3

ℳ′

5. Sieger et al., RBF Morphing Techniques for Simulation-based Design Optimization, Engineering with Computers, 2014
26
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Summary

• A deformation technique for design optimization
Modeling flexibility like surface-based methods
Representation-independence of space deformations
High quality comparable to RBFs
Improved scalability through sparse linear systems
Geometric constraints

Precomputation time of MLS basis functions
Slow convergence for complex constraints

• Central idea: Improve the design optimization process by
integrating constraints directly into the deformation

• Observation: Significant differences in the modeling flexibility and
quality of RBFs and MLS

28
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Future Work

• Additional constraint types:
– Rigid components
– Width, height, distances
– Symmetry relations
– Angle relations

• Automatic constraint detection
• Performance improvements
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Thanks for your attention!
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