Constrained Space Deformation for Design Optimization

Daniel Sieger¹ Stefan Menzel² Mario Botsch¹

¹Graphics & Geometry Group, Bielefeld University ²Honda Research Institute Europe

Common target designs are sheet metal surfaces

Mesh-Based Surface Deformation

Thin Shell Deformation ¹

- Physically-inspired technique suitable for sheet metal surfaces
- Flexible modeling of material behavior
- Based on the minimization of stretching and bending energies

^{1.} Botsch et al., On Linear Variational Surface Deformation Methods, Trans. on Visualization and Computer Graphics, 2008

Thin Shell Deformation

Measure stretching and bending by 1st and 2nd order partial derivatives of the displacement function $d: S \to \mathbb{R}^3$

$$E_{\text{stretch}}[\boldsymbol{d}] = \int_{\mathcal{D}} \|\nabla \boldsymbol{d}(\boldsymbol{x})\|^2 \, \mathrm{d}\boldsymbol{x}$$
$$E_{\text{bend}}[\boldsymbol{d}] = \int_{\mathcal{D}} \|\Delta \boldsymbol{d}(\boldsymbol{x})\|^2 \, \mathrm{d}\boldsymbol{x}$$
$$E_{\text{fix}}[\boldsymbol{d}] = \int_{\mathcal{H}\cup\mathcal{F}} \|\boldsymbol{d}(\boldsymbol{x}) - \bar{\boldsymbol{d}}(\boldsymbol{x})\|^2 \, \mathrm{d}\boldsymbol{x}$$

Surface-Based Discretization

Discretize on the mesh using standard differential operators²

$$E_{\text{stretch}}[\boldsymbol{d}_{h}] = \sum_{\boldsymbol{x}_{i} \in \mathcal{D}} A_{i} \|\nabla \boldsymbol{d}_{i}\|^{2}$$
$$E_{\text{bend}}[\boldsymbol{d}_{h}] = \sum_{\boldsymbol{x}_{i} \in \mathcal{D}} A_{i} \|\Delta \boldsymbol{d}_{i}\|^{2}$$
$$E_{\text{fix}}[\boldsymbol{d}_{h}] = \sum_{\boldsymbol{x}_{i} \in \mathcal{H} \cup \mathcal{F}} A_{i} \|\boldsymbol{d}_{i} - \bar{\boldsymbol{d}}_{i}\|^{2}$$

→ Solve a linear system:

$$\left(w_{s}\boldsymbol{G}^{T}\boldsymbol{G}+w_{b}\boldsymbol{L}^{T}\boldsymbol{L}+w_{f}\boldsymbol{F}^{T}\boldsymbol{F}\right)\boldsymbol{d} = w_{f}\boldsymbol{F}^{T}\boldsymbol{F}\boldsymbol{d}$$

^{2.} Meyer et al., Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, Visualization and Mathematics, 2003

Limitations

• Assumption: Surface \mathcal{S} is a proper triangle mesh

Limitations

• Assumption: Surface \mathcal{S} is a proper triangle mesh

- Instead of deforming the surface $\mathcal S,$ deform embedding space Ω
 - Disconnected components
 - Robustness against defects
 - + Representation independence

- Instead of deforming the surface $\mathcal S,$ deform embedding space Ω
 - Disconnected components
 - Robustness against defects
 - + Representation independence
- Construct a space deformation function $d: \Omega \subset \mathbb{R}^3 \to \mathbb{R}^3$

- Instead of deforming the surface $\mathcal S,$ deform embedding space Ω
 - Disconnected components
 - Robustness against defects
 - + Representation independence
- Construct a space deformation function $d: \Omega \subset \mathbb{R}^3 \to \mathbb{R}^3$

4

- Use meshless approximation methods
- Represent *d* by basis functions φ_i located at centers c_i :

$$\boldsymbol{d}(\boldsymbol{x}) = \sum_{j=1}^{k} \boldsymbol{w}_{j} \varphi_{j}(\boldsymbol{x})$$

- Instead of deforming the surface $\mathcal S,$ deform embedding space Ω
 - Disconnected components
 - Robustness against defects
 - + Representation independence
- Construct a space deformation function $d: \Omega \subset \mathbb{R}^3 \to \mathbb{R}^3$
 - Use meshless approximation methods
 - Represent *d* by basis functions φ_i located at centers c_i :

$$\boldsymbol{d}(\boldsymbol{x}) = \sum_{j=1}^{k} \boldsymbol{w}_{j} \boldsymbol{\varphi}_{j}(\boldsymbol{x})$$

- Questions:
 - What basis functions to choose?

- Instead of deforming the surface $\mathcal S,$ deform embedding space Ω
 - Disconnected components
 - Robustness against defects
 - + Representation independence
- Construct a space deformation function $d: \Omega \subset \mathbb{R}^3 \to \mathbb{R}^3$
 - Use meshless approximation methods
 - Represent *d* by basis functions φ_i located at centers c_i :

$$\boldsymbol{d}(\boldsymbol{x}) = \sum_{j=1}^{k} \boldsymbol{w}_{j} \varphi_{j}(\boldsymbol{x})$$

- Questions:
 - What basis functions to choose?
 - Where to place basis functions?

- Instead of deforming the surface $\mathcal S,$ deform embedding space Ω
 - Disconnected components
 - Robustness against defects
 - + Representation independence
- Construct a space deformation function $d: \Omega \subset \mathbb{R}^3 \to \mathbb{R}^3$
 - Use meshless approximation methods
 - Represent *d* by basis functions φ_i located at centers c_i :

$$\boldsymbol{d}(\boldsymbol{x}) = \sum_{j=1}^{k} \boldsymbol{w}_{j} \boldsymbol{\varphi}_{j}(\boldsymbol{x})$$

- Questions:
 - What basis functions to choose?
 - Where to place basis functions?

Goal: Generate uniformly distributed points c_j on the surface

Goal: Generate uniformly distributed points c_j on the surface

1. Dense random sampling of each mesh face

Goal: Generate uniformly distributed points c_j on the surface

1. Dense random sampling of each mesh face

Goal: Generate uniformly distributed points c_i on the surface

- 1. Dense random sampling of each mesh face
- 2. Farthest point selection

Goal: Generate uniformly distributed points c_i on the surface

- 1. Dense random sampling of each mesh face
- 2. Farthest point selection
- 3. Lloyd relaxation (k-means clustering)

• What basis functions φ_i to choose?

- What basis functions φ_i to choose?
- · Goal: Achieve same modeling flexibility as surface deformation

- What basis functions φ_i to choose?
- Goal: Achieve same modeling flexibility as surface deformation
- Ground truth: Combine surface energy with space deformation

- What basis functions φ_i to choose?
- · Goal: Achieve same modeling flexibility as surface deformation
- Ground truth: Combine surface energy with space deformation
- Express d through coefficients w and subspace matrix arPsi

$$\boldsymbol{d} = \boldsymbol{\Phi} \boldsymbol{w}$$
 with $\boldsymbol{\Phi}_{ij} = \varphi_j(\boldsymbol{x}_i)$

- What basis functions φ_i to choose?
- · Goal: Achieve same modeling flexibility as surface deformation
- Ground truth: Combine surface energy with space deformation
- Express d through coefficients w and subspace matrix Φ

$$\boldsymbol{d} = \boldsymbol{\Phi} \boldsymbol{w}$$
 with $\boldsymbol{\Phi}_{ij} = \varphi_j(\boldsymbol{x}_i)$

• Leads to a modified linear system:

$$\boldsymbol{\Phi}^{T}\left(\boldsymbol{w}_{s}\boldsymbol{G}^{T}\boldsymbol{G}+\boldsymbol{w}_{b}\boldsymbol{L}^{T}\boldsymbol{L}+\boldsymbol{w}_{f}\boldsymbol{F}^{T}\boldsymbol{F}\right)\boldsymbol{\Phi}\boldsymbol{w} = \boldsymbol{\Phi}^{T}\left(\boldsymbol{w}_{f}\boldsymbol{F}^{T}\boldsymbol{F}\boldsymbol{\bar{d}}\right)$$

• Global triharmonic radial basis functions (RBFs)

$$\varphi_j(\boldsymbol{x}) = \|\boldsymbol{x} - \boldsymbol{c}_j\|^3$$

• Global triharmonic radial basis functions (RBFs)

$$\varphi_j(\boldsymbol{x}) = \|\boldsymbol{x} - \boldsymbol{c}_j\|^3$$

• Good results for bending

• Global triharmonic radial basis functions (RBFs)

$$\varphi_j(\boldsymbol{x}) = \|\boldsymbol{x} - \boldsymbol{c}_j\|^3$$

· Good results for bending, bad results for stretching

• Global triharmonic radial basis functions (RBFs)

$$\varphi_j(\boldsymbol{x}) = \|\boldsymbol{x} - \boldsymbol{c}_j\|^3$$

· Good results for bending, bad results for stretching

• Global triharmonic radial basis functions (RBFs)

$$\varphi_j(\boldsymbol{x}) = \|\boldsymbol{x} - \boldsymbol{c}_j\|^3$$

- Good results for bending, bad results for stretching
- Global support \rightarrow dense linear systems

• Compactly supported RBFs

$$\varphi_j(\mathbf{x}) = \varphi\left(\left\|\mathbf{x} - \mathbf{c}_j\right\|\right) = \varphi(r) = \begin{cases} (1-r)^4(4r+1), & r < \sigma, \\ 0, & \text{otherwise}. \end{cases}$$

• Compactly supported RBFs

$$\varphi_j(\boldsymbol{x}) = \varphi\left(\left\|\boldsymbol{x} - \boldsymbol{c}_j\right\|\right) = \varphi(r) = \begin{cases} (1-r)^4(4r+1), & r < \sigma, \\ 0, & \text{otherwise}. \end{cases}$$

• Small support \rightarrow sparse linear system, bad results

• Compactly supported RBFs

$$\varphi_j(\boldsymbol{x}) = \varphi\left(\left\|\boldsymbol{x} - \boldsymbol{c}_j\right\|\right) = \varphi(r) = \begin{cases} (1-r)^4(4r+1), & r < \sigma, \\ 0, & \text{otherwise}. \end{cases}$$

• Large support \rightarrow dense linear system, good results

$$\varphi_j(\mathbf{x}) = \mathbf{p}(\mathbf{x})^T \mathbf{M}^{-1}(\mathbf{x}) \mathbf{p}(\mathbf{c}_j) w(\mathbf{x} - \mathbf{c}_j)$$

^{3.} Fries et al., Classification and Overview of Meshfree Methods, Technical Report, TU Braunschweig, 2003

$$\varphi_j(\mathbf{x}) = \mathbf{p}(\mathbf{x})^T \mathbf{M}^{-1}(\mathbf{x}) \mathbf{p}(\mathbf{c}_j) w(\mathbf{x} - \mathbf{c}_j)$$
polynomial basis

^{3.} Fries et al., Classification and Overview of Meshfree Methods, Technical Report, TU Braunschweig, 2003

^{3.} Fries et al., Classification and Overview of Meshfree Methods, Technical Report, TU Braunschweig, 2003

^{3.} Fries et al., Classification and Overview of Meshfree Methods, Technical Report, TU Braunschweig, 2003

Moving Least Squares (MLS) basis functions³

• More complex form, inversion of *M* required

^{3.} Fries et al., Classification and Overview of Meshfree Methods, Technical Report, TU Braunschweig, 2003

- Moving Least Squares (MLS) basis functions
- + Small support → sparse linear system, good results

- Moving Least Squares (MLS) basis functions
- + Small support → sparse linear system, good results

• Goal: Fully space-based discretization of stretching and bending energies using MLS approximation

- Goal: Fully space-based discretization of stretching and bending energies using MLS approximation
- Replace vertex-based integration over the surface ${\mathcal S}$ with purely space-based integration method

- Goal: Fully space-based discretization of stretching and bending energies using MLS approximation
- Replace vertex-based integration over the surface ${\mathcal S}$ with purely space-based integration method
- Use Lloyd-based sampling to determine integration points q_i

• Evaluate gradients and Laplacians of φ_i at integration points q_i :

$$\widetilde{E}_{\text{stretch}} = \sum_{i=1}^{N} V_i \|\nabla \boldsymbol{d}(\boldsymbol{q}_i)\|^2 = \sum_{i=1}^{N} V_i \left\|\sum_{j=1}^{k} \boldsymbol{w}_j \nabla \varphi_j(\boldsymbol{q}_i)\right\|^2$$
$$\widetilde{E}_{\text{bend}} = \sum_{i=1}^{N} V_i \|\Delta \boldsymbol{d}(\boldsymbol{q}_i)\|^2 = \sum_{i=1}^{N} V_i \left\|\sum_{j=1}^{k} \boldsymbol{w}_j \Delta \varphi_j(\boldsymbol{q}_i)\right\|^2$$

• Evaluate gradients and Laplacians of φ_i at integration points q_i :

$$\widetilde{E}_{\text{stretch}} = \sum_{i=1}^{N} V_i \|\nabla \boldsymbol{d}(\boldsymbol{q}_i)\|^2 = \sum_{i=1}^{N} V_i \left\|\sum_{j=1}^{k} \boldsymbol{w}_j \nabla \varphi_j(\boldsymbol{q}_i)\right\|^2$$

$$\widetilde{E}_{\text{bend}} = \sum_{i=1}^{N} V_i \|\Delta \boldsymbol{d}(\boldsymbol{q}_i)\|^2 = \sum_{i=1}^{N} V_i \left\|\sum_{j=1}^{k} \boldsymbol{w}_j \Delta \varphi_j(\boldsymbol{q}_i)\right\|^2$$

· Leads to a modified linear system

$$\left(w_{s}\widetilde{\boldsymbol{G}}^{T}\widetilde{\boldsymbol{G}}+w_{b}\widetilde{\boldsymbol{L}}^{T}\widetilde{\boldsymbol{L}}+w_{f}\boldsymbol{\Phi}^{T}\boldsymbol{F}^{T}\boldsymbol{F}\boldsymbol{\Phi}\right)\boldsymbol{w} = w_{f}\boldsymbol{\Phi}^{T}\boldsymbol{F}^{T}\boldsymbol{F}\boldsymbol{d}$$

• Space-based discretization

• Space-based discretization

• Surface-based discretization

Constrained Space Deformation

- Design prototypes contain important geometric features
 - Planar components
 - Circular couplings or wheelhouses
 - Characteristic feature lines

- Design prototypes contain important geometric features
 - Planar components
 - Circular couplings or wheelhouses
 - Characteristic feature lines
- Deforming the design during optimization distorts features
 - Impaired functionality
 - Violated production limitations

- Design prototypes contain important geometric features
 - Planar components
 - Circular couplings or wheelhouses
 - Characteristic feature lines
- Deforming the design during optimization distorts features
 - Impaired functionality
 - Violated production limitations
- · Classical solution: Add penalty terms to the cost function
 - *Creation* of infeasible designs
 - Costly evaluation (e.g., CFD)

- Our approach: Prevent distortion of features by incorporating geometric constraints into the deformation
 - + Only create feasible designs
 - + Avoid unnecessary performance evaluations

- Our approach: Prevent distortion of features by incorporating geometric constraints into the deformation
 - + Only create feasible designs
 - + Avoid unnecessary performance evaluations
- Constrained deformation techniques
 - Most methods are surface-based

- Our approach: Prevent distortion of features by incorporating geometric constraints into the deformation
 - + Only create feasible designs
 - + Avoid unnecessary performance evaluations
- Constrained deformation techniques
 - Most methods are surface-based
 - Projection-based constraints⁴

^{4.} Bouaziz et al., Shape-Up: Shaping Discrete Geometry with Projections, Computer Graphics Forum, 2012

Projection-Based Constraints

- Define projection operators *P_c*: Plane, circle, ...
- · Minimize deviation from prescribed constraints

$$E_{\text{constr}}(\boldsymbol{x}) = \sum_{c=1}^{s} \|\boldsymbol{x} - P_{c}(\boldsymbol{x})\|^{2}$$

Projection-Based Constraints

- Define projection operators *P_c*: Plane, circle, ...
- · Minimize deviation from prescribed constraints

$$E_{\text{constr}}(\boldsymbol{x}) = \sum_{c=1}^{s} \|\boldsymbol{x} - P_{c}(\boldsymbol{x})\|^{2}$$

- Projections P_c typically are nonlinear functions of x
- → Minimize E_{constr} by iterative alternating optimization

Geometric Constraint Examples

Fundamental geometric constraints: Planarity, circularity, feature lines

Geometric Constraint Examples

Fundamental geometric constraints: Planarity, circularity, feature lines

Geometric Constraint Examples

Fundamental geometric constraints: Planarity, circularity, feature lines

Volume Deformation Examples

Comparison to previous results⁵

- Original mesh quality: 0.98
- After RBF deformation: 0.951
- Using our new method: 0.954

^{5.} Sieger et al., RBF Morphing Techniques for Simulation-based Design Optimization, Engineering with Computers, 2014.

Summary & Outlook

- A deformation technique for design optimization
 - + Modeling flexibility like surface-based methods
 - + Representation-independence of space deformations
 - + High quality comparable to RBFs
 - + Improved scalability through sparse linear systems
 - + Geometric constraints

- · A deformation technique for design optimization
 - + Modeling flexibility like surface-based methods
 - + Representation-independence of space deformations
 - + High quality comparable to RBFs
 - + Improved scalability through sparse linear systems
 - Geometric constraints
 - Precomputation time of MLS basis functions
 - Slow convergence for complex constraints

- A deformation technique for design optimization
 - + Modeling flexibility like surface-based methods
 - + Representation-independence of space deformations
 - + High quality comparable to RBFs
 - + Improved scalability through sparse linear systems
 - Geometric constraints
 - Precomputation time of MLS basis functions
 - Slow convergence for complex constraints
- Central idea: Improve the design optimization process by integrating constraints *directly* into the deformation

- · A deformation technique for design optimization
 - + Modeling flexibility like surface-based methods
 - + Representation-independence of space deformations
 - High quality comparable to RBFs
 - + Improved scalability through sparse linear systems
 - Geometric constraints
 - Precomputation time of MLS basis functions
 - Slow convergence for complex constraints
- Central idea: Improve the design optimization process by integrating constraints *directly* into the deformation
- Observation: Significant differences in the modeling flexibility and quality of RBFs and MLS
Future Work

- Additional constraint types:
 - Rigid components
 - Width, height, distances
 - Symmetry relations
 - Angle relations
- Automatic constraint detection
- Performance improvements

Future Work?

- Additional constraint types:
 - Rigid components
 - Width, height, distances
 - Symmetry relations
 - Angle relations
- Automatic constraint detection
- Performance improvements

Thanks for your attention!