
On Shape Deformation Techniques for
Simulation-based Design Optimization

Daniel Sieger and Stefan Menzel and Mario Botsch

Abstract We present an in-depth analysis and benchmark of shape deformation
techniques for their use in simulation-based design optimization scenarios. We first
introduce classical free-form deformation, its direct manipulation variant, as well as
deformations based on radial basis functions. We compare the techniques in a se-
ries of representative synthetic benchmarks, including computational performance,
numerical robustness, quality of the deformation, adaptive refinement, as well as
precision of constraint satisfaction. As an application-oriented benchmark we in-
vestigate the ability to adapt an existing volumetric simulation mesh according to an
updated surface geometry, including unstructured tetrahedral, structured hexahedral,
and arbitrary polyhedral example meshes. Finally, we provide a detailed assessment
of the methods and give concrete advice on choosing a suitable technique for a given
optimization scenario.

1 Introduction

Simulation-based design optimization is a key aspect of the product development
process of automotive industry, aircraft construction, and naval architecture. The
overall goal is to explore alternative and novel designs with improved physical or
aesthetic properties. The development process typically starts with the creation of

Daniel Sieger
Bielefeld University, Postfach 100 131, D-33501 Bielefeld, Germany
e-mail: dsieger@techfak.uni-bielefeld.de

Stefan Menzel
Honda Research Institute Europe GmbH, Carl-Legien-Str. 30, D-63073 Offenbach/Main, Germany
e-mail: stefan.menzel@honda-ri.de

Mario Botsch
Bielefeld University, Postfach 100 131, D-33501 Bielefeld, Germany
e-mail: botsch@techfak.uni-bielefeld.de

1



2 Daniel Sieger and Stefan Menzel and Mario Botsch

an initial design prototype using a computer aided design (CAD) tool. Subsequent
steps create a polygon surface mesh from the CAD model as well as a volumet-
ric simulation mesh for physical performance evaluation, e.g., using computational
fluid dynamics (CFD) simulations for aerodynamic performance calculation, or fi-
nite element methods (FEM) for structural mechanics simulations. Design variations
are then created based on physical performance during simulation. In this paper, we
are concerned with efficient means to create such alternate designs.

The obvious approach of changing the CADmodel directly is prohibitive in many
cases, since both the surface and volume meshing steps would have to be repeated.
For complex geometries and precise physical simulations the meshing process might
even require manual interaction by an expert. An alternative is to use shape deforma-
tion techniques to adapt both the surface and the volume mesh of the initial design
prototype directly. This way, the design optimization can be performed in a fully au-
tomatic and parallel manner, which is of particular importance when using stochastic
optimization techniques—such as evolutionary algorithms—which typically require
the creation and evaluation of a large number of design variations in order to find a
feasible solution.

This paper is organized as follows: We begin with an investigation of the funda-
mental requirements a deformation method should satisfy in order to be suitable for
common design optimization scenarios (Section 2). Based on these requirements we
introduce state-of-the-art shape deformation methods including classical free-form
deformation (FFD), direct manipulation FFD (DM-FFD), and deformations based
on radial basis functions (RBFs). We compare the different methods in a series of
synthetic and application oriented benchmarks in Section 3. Finally, we perform
a detailed assessment of the methods in Section 4 and give concrete guidance for
choosing a suitable technique for a particular design optimization scenario.

2 Shape Deformation Methods

In this section we introduce state-of-the-art shape deformation methods for their use
in simulation-based design optimization. Before describing the individual techniques
in detail, we briefly review related work, motivate our selection of methods, and in-
troduce the concept of a space deformation. Shape deformation methods have been
an area of continuous and extensive research within the fields of computer graph-
ics and geometric modeling. Consequently, a wide variety of techniques has been
proposed during recent years. Since providing an overview of the complete field is
beyond the scope of this work we refer to existing introductions and surveys. De-
tailed references for the individual methods covered in this work are provided in the
corresponding sections. A general introduction to shape deformation techniques is
provided by [4]. Surveys on space deformation techniques have been presented in
[1] and [8]. While the former concentrates on building a mathematical formalism
for the different methods, the latter is focused on the interactive manipulation of a
model by a designer. In contrast, a survey of shape parametrization techniques in



On Shape Deformation Techniques for Simulation-based Design Optimization 3

M

d : IR3 → IR3

x′ = x+ d(x)

M′

Fig. 1 Deformation of the DrivAer model. The modelM is warped by the space deformation
function d. Each point x ∈M is transformed to updated locations x′ = x+ d(x) ∈M′.

the context of design optimization is given in [27]. Staten and coworkers recently
proposed and evaluated several mesh morphing techniques, which they compared
with respect to computational performance and element quality on different tetra-
hedral and hexahedral meshes [38]. This evaluation was later extended by Sieger
and colleagues [35, 36]. Linear variational surface deformation methods have been
investigated in detail in [5].

The selection of deformation methods considered in our comparison is highly
driven by our application domain—design optimization. In this context, one may
formulate several requirements a deformation technique should satisfy. A fundamen-
tal one is the ability to transparently deal with different object representations such
as triangular or quadrilateral surface meshes, volumetric meshes, polygon soups, as
well as point-based representations. On the one hand, this requirement stems from
the desire to be able to optimize a wide variety of designs. On the other hand, it is
particularly important when the evaluation of the objective function involves com-
putationally expensive CFD or FEM simulations. As already outlined in Section 1,
the volumetric simulation meshes typically are very time-consuming to generate.
Therefore, in order to avoid the costly mesh generation process for each design vari-
ation created during optimization, one typically aims at adapting an initial simulation
mesh alongside with the surface. A second requirement is the ability to robustly deal
with defects in the input geometry. Especially when the surface mesh is the result
of an automatic conversion process from the CAD model the resulting mesh might
contain degeneracies such as badly shaped triangles, non-manifold configurations,
or disconnected components.

A type of deformation methods that naturally fulfills the above requirements are
so-called space deformations. The fundamental idea behind these methods is to de-
form the embedding space around an object, thereby deforming the object implicitly.
From a mathematical point of view a space deformation is a function d : IR3 → IR3

that maps each point in space to a certain displacement. Given a deformation func-
tion, a modelM can be transformed to a deformed modelM′ by computing updated
point locations x′ = x + d(x) for each original point x ∈ M. The basic procedure
is illustrated in Figure 1, where a space deformation for the DrivAer body [12] is
shown. Naturally, space deformation techniques differ in how the function d is con-
structed. Typically, a control structure such as a volumetric lattice or a set of points
is blended with some form of basis functions, as we will describe for the individual
methods in the sections that follow. Since the deformations applied during optimiza-
tion are typically relatively small, we focus on linear space deformation methods.



4 Daniel Sieger and Stefan Menzel and Mario Botsch

M

dffd

M′

Fig. 2 Free-form deformation applied to the DrivAer model. The original modelM is embedded
in a regular lattice of 4 × 4 × 4 control points (golden). After moving the selected control points
(red) the updated object point locations x′ are computed by evaluating the FFD space deformation
function dffd for the local coordinates u of the point x.

2.1 Free-form Deformation

Free-form deformation (FFD) is a well-established deformation technique that has
been widely used in both academia and industry. Since it also has been employed
within shape optimization [18, 28] and simulation-based design optimization [19, 20,
21, 34] it forms the basis for our comparison. Before describing the method in detail
we first review important variants of the technique. Free-form deformations using
Bézier basis functions have been originally introduced in [31]. Local deformations
using B-spline basis functions have been introduced in [11]. An extension to more
flexible control lattices, in particular cylindrical ones, has been proposed in [6]. This
approach was later extended to control lattices of arbitrary topology [17]. Free-form
deformations using non-uniform rational B-splines are described in [16]. A highly
flexible but computationally involved variant of FFD based on a 3D-Delaunay trian-
gulation, its Voronoi dual, and Sibson coordinates [33] has been presented in [23].
A variant of FFD using T-splines [32] as basis functions—thereby allowing for local
refinement of the control lattice—has been presented in [37].

The basic idea of FFD is based on embedding the object to be deformed in a
parallelepiped lattice and deforming it using a trivariate tensor-product Bézier or B-
spline function. The deformation procedure to perform free-form deformation of an
object can be divided into several steps. First, a control lattice has to be generated and
adapted to the deformation scenario at hand. Then the local coordinates with respect
to the control lattice have to be computed for each point to be deformed. After this
embedding each object point x ∈ M can be expressed as a linear combination of
lattice control points cijk and basis functions Ni:

x =

l∑
i=0

m∑
j=0

n∑
k=0

cijkNi(u1)Nj(u2)Nk(u3), (1)

where (u1, u2, u3) are the local coordinates of x with respect to the control lattice,
and l,m, n are the numbers of control points in each direction. For the sake of sim-
plicity we define

u(x) := (u1, u2, u3), Np(u(x)) := Ni(u1)Nj(u2)Nk(u3),



On Shape Deformation Techniques for Simulation-based Design Optimization 5

M
F

H
D

ddmffd

M′

Fig. 3 Direct manipulation FFD on the DrivAer model using a handle-based direct manipulation
interface. The vertices of the modelM are classified into three distinct sets: Handle vertices (H,
golden) can be directly displaced, fixed vertices (F , gray) are kept in place, and deformable vertices
(D, blue) are updated according to the deformation method.

as well as
δcp := δcijk = c′ijk − cijk,

where c′ijk denotes an updated control point location. We can then define the FFD
space deformation function as

dffd(x) =
∑
p

δcpNp(u(x)). (2)

Finally, the deformation is performed by moving the control points and computing
the updated object point locations. An example deformation using FFD is illustrated
in Figure 2.

In our implementation of FFD we use cubic B-splines with a uniform knot vector.
While this type of basis functions requires an iterative root-finding technique such as
a Newton method [26] for computing the local coordinates, the important advantage
is the capability to perform deformations with local support.

2.2 Direct Manipulation FFD

In an interactive modeling system the manipulation of control points to perform a
deformation becomes a tedious task—especially when using a complex control lat-
tice with a large number of control points. A more flexible and intuitive interface
for controlling a deformation is offered by direct manipulation approaches, which
have been introduced for FFD in [13], referred to as DM-FFD throughout this pa-
per. Instead of moving control points, the user directly moves the object points. The
modeling system then computes control point displacements so that the new object
point positions are matched as precise as possible. An example deformation of the
DrivAer model using direct manipulation is shown in Figure 3.

Direct manipulation interfaces are not only beneficial within an interactive mod-
eling scenario, they can also be used effectively within simulation-based design op-
timization, as has been shown for direct manipulation FFD in [20]. Due to the more
direct influence of the parameters determined during optimization on the design,



6 Daniel Sieger and Stefan Menzel and Mario Botsch

using such an interface can result in a drastically faster convergence of the optimiza-
tion. In contrast to classical FFD, the ability to choose an arbitrary object point for
optimization offers a higher degree of flexibility. Furthermore—due to the automatic
computation of control point displacements—this approach also reduces the need to
pre-deform the control lattice to a certain degree.

Within a direct manipulation interface the user—be it an engineer or an optimiza-
tion algorithm—prescribes a set of m displacement constraints at so-called handle
points {h1, . . . ,hm}, where the deformation function has to attain certain displace-
ment values d(hi) = h′i − hi = δhi. The displacements {δc1, . . . , δcn} of the n
control points satisfying the prescribed displacements can be computed by solving
the linear system

N1(u(h1)) . . . Nn(u(h1))
...

. . .
...

N1(u(hm)) . . . Nn(u(hm))


︸ ︷︷ ︸

Φ


δcT1
...

δcTn


︸ ︷︷ ︸

C

=


δhT1
...

δhTm


︸ ︷︷ ︸

H

. (3)

Since the linear system (3) can be over-determined as well as under-determined, it is
typically solved by computing the pseudo-inverse Φ+ of the basis functionmatrixΦ.
This is typically done by performing a singular value decomposition (SVD) [13, 10]
so that Φ = UΣVT , where U is am×m orthogonal matrix, Σ is am×n diagonal
matrix containing the singular values of Φ, and VT is a n × n orthogonal matrix.
The pseudo-inverse of Φ then is Φ+ = VΣ+UT , where the pseudo-inverse of the
diagonal matrix Σ can be computed as

Σ+
ij =

{
1
σi
, if i = j ∧ σi 6= 0,

0, otherwise,
(4)

where σi is the i-th singular value ofΦ. We note that for values close to zero σi has to
be clamped in order to prevent numerical instabilities. Once Φ+ has been computed
the control point displacements can be computed by

C = Φ+H, (5)

where C is the matrix of control point displacements and H is the matrix of con-
straint displacements. However, solving for C using the pseudo-inverse has its draw-
backs. If the system is under-determined, a least-norm solution is found, i.e., the
amount of movement of the control points ‖δc‖ is minimized. If the system is overde-
termined, a least-squares solution is found, i.e., the error in satisfying the specified
constraints is minimized. This means that depending on the resolution of the control
lattice the system might not be able to satisfy the constraints specified by the user in
an exact manner. In both cases, however, the solution does not necessarily result in
a physically plausible deformation.



On Shape Deformation Techniques for Simulation-based Design Optimization 7

M
F

H
D

drbf

M′

Fig. 4 Deformation of the DrivAer model using a handle-based direct manipulation interface for
RBFs.

2.3 RBF Deformation

Mesh deformation using radial basis functions (RBFs) has been proposed by sev-
eral authors [2, 3, 15, 22]. This method improves upon FFD and DM-FFD in two
significant aspects: First, due to its point-based or kernel-based nature, introducing
additional degrees of freedom in regions of interest is highly flexible, without the
need to maintain a complicated control structure. Second, the deformation function
can be constructed in such a way that it directly minimizes a physically inspired
energy—resulting in a smooth and physically plausible deformation. An example
deformation based on radial basis functions using the same handle-based interface
as described in Figure 3 for DM-FFD is given in Figure 4.

On a more abstract level, we can treat mesh deformation as a scattered data inter-
polation problem:We search for a function d : IR3 → IR3 that (i) exactly interpolates
the prescribed displacements d(hi) = δhi and (ii) smoothly interpolates these dis-
placements through space. Radial basis functions are well known to be suitable for
solving this type of problem [39]. Using RBFs we define the deformation function as
a linear combination of radially symmetric kernel functions ϕj(x) = ϕ(‖x− cj‖),
located at centers cj ∈ IR3 and weighted by wj ∈ IR3, plus a linear polynomial to
guarantee linear precision:

d(x) =

m∑
j=1

wjϕj(x) +

4∑
k=1

qkπk(x) , (6)

where {π1, π2, π3, π4} = {x, y, z, 1} is a basis of the space of linear trivariate poly-
nomials, weighted by coefficients qk ∈ IR3. Note that the polynomial term is im-
portant, since it guarantees to find the optimal affine motion (translation, rotation,
scaling) contained in the prescribed displacements δhi.

The choice of the kernel function ϕ : IR → IR basically determines the shape of
the interpolant. Commonly used kernels include Gaussians, (inverse) multiquadrics,
and polyharmonic splines (see Table 1 for an overview). In our application we aim
for high quality deformations minimizing the distortion of mesh elements. To meet
this goal, we have to use a sufficiently smooth kernel function. While Gaussian and
multiquadric basis functions provide infinite smoothness, i.e., they are C∞, they
require the choice of an additional shape parameter (the ε in Table 1). Small values



8 Daniel Sieger and Stefan Menzel and Mario Botsch

Fig. 5 Comparison between a biharmonic (left) and a triharmonic (right) deformation of a plane.
We displace the golden region, keep the gray region fixed, and deform the blue region. We place
RBF kernels on all vertices in the golden and gray regions.

of ε increase approximation accuracy, but lead to numerically instabilities, and vice
versa. Therefore, finding the optimal shape parameter for a given radial basis function
and the particular application is a non-trivial task on its own (see [7] for an overview
of different strategies).

In contrast, polyharmonic splines are free of shape parameters, but only of finite
smoothness. Depending on the application scenario, we have to choose a sufficiently
high degree of smoothness. In IR3 the polyharmonic spline ϕk(r) = r2k−3 is a
fundamental solution of the k-th order Laplacian ∆k, such that also the RBF de-
formation (6) is k-harmonic, i.e., ∆kd = 0. Being the strong form of a variational
energy minimization, this is equivalent [39] to d minimizing the weak form∫∫∫

IR3

∥∥∥∥∂kd∂xk

∥∥∥∥2

+

∥∥∥∥ ∂kd

∂xk−1∂y

∥∥∥∥2

+ . . .+

∥∥∥∥∂kd∂zk

∥∥∥∥2

dx dy dz. (7)

In order to preserve mesh quality during deformation, we should construct a de-
formation function that at least minimizes the change of first-order derivatives of
the mesh elements [38], and therefore the first-order derivatives of the deformation
function. With k = 1 in (7), this is achieved by the harmonic RBF ϕ(r) = 1/r, but
those basis functions are singular at their centers. The biharmonic spline ϕ(r) = r
is well defined, but not differentiable at the center and therefore not smooth enough

Gaussian ϕ(r) = e−(εr)2

Multiquadric ϕ(r) =
√

1 + (εr)2

Inverse multiquadric ϕ(r) = 1/
√

1 + (εr)2

Polyharmonic spline in IRd ϕk(r) =

{
r2k−d, d odd,
r2k−d log(r), d even.

Table 1 Commonly used radial basis functions. For Gaussians and (inverse) multiquadrics ε de-
notes the shape parameter. For polyharmonic splines k denotes the order of smoothness.



On Shape Deformation Techniques for Simulation-based Design Optimization 9

for our application (see Figure 5). By choosing ϕ(r) = r3, we obtain a deformation
function that is triharmonic, therefore penalizes third-order derivatives in (7), and is
globally C2 smooth. With these properties, it is the lowest-order polyharmonic RBF
suitable for our application. Since for numerical robustness a low order is preferable,
we eventually chose triharmonic RBFs for our deformation method.

We can exactly satisfy the interpolation constraints d(hi) = δhi by placing RBF
kernels at the constraint positions (i.e., cj = hj) and finding the coefficients wj and
qk by solving the (m+ 4)× (m+ 4) linear system

ϕ1(h1) · · · ϕm(h1) π1(h1) · · · π4(h1)
...

. . .
...

...
. . .

...

ϕ1(hm) · · · ϕm(hm) π1(hm) · · · π4(hm)

π1(h1) · · · π1(hm) 0 · · · 0
...

. . .
...

...
. . .

...

π4(h1) · · · π4(hm) 0 · · · 0


︸ ︷︷ ︸

Φ

·



wT
1

...

wT
m

qT1
...

qT4


︸ ︷︷ ︸

W

=



δhT1
...

δhTm

0
...

0


︸ ︷︷ ︸

H

. (8)

After solving (8) we can compute the morphed meshM′ by simply evaluating
the RBF deformation at each mesh vertex: x′i = xi + d(xi). The computationally
most expensive part is the solution of the linear system (8), which is dense due to
the global support of ϕ(r). We discuss the performance and the scalability of our
method in Section 3.1.

3 Benchmarks

In this section we evaluate the different deformation methods based on a set of syn-
thetic benchmarks. The goal of these benchmarks is to capture basic properties of the
different deformation methods which are relevant for the use in design optimization
scenarios. We perform our evaluation based on the following criteria: computational
performance, numerical robustness, adaptivity and precision, as well as quality of
the deformation. For each criterion we first describe our tests and methodology, and
then present the results for the individual deformation methods.

We performed all tests on a Dell T7500 workstation with an Intel Xeon E5645
2.4 GHz CPU and 18GB RAM running Ubuntu Linux 12.04 x86_64. We compiled
all code with gcc 4.6.3, optimization turned on (using -O3) and debugging checks
disabled (-DNDEBUG). In order to rule out caching and power saving issues, we
averaged the timings over five morphing steps.

In many of the benchmarks a direct comparison with FFD based on control point
manipulation is not really feasible, i.e., it is not possible to compare the methods on a
solid and representative basis. In these cases, we only compare DM-FFD and RBFs.



10 Daniel Sieger and Stefan Menzel and Mario Botsch

3.1 Performance

While the impact of the performance of a deformation method is often negligible
when used within an design optimization loop, it is still an important and fundamen-
tal characteristic. Furthermore, it is crucial for usage in an interactivemodeling appli-
cation. Within control point-based FFD, the only performance-critical component is
the computation of the local coordinates of each object point with respect to the con-
trol lattice. When using B-spline basis functions, this computation requires the use
of a numerical technique such as a golden section search or a Newton method [26].
However, since the local coordinate computation is independent for each object point,
this part is trivial to parallelize.

Naturally, direct manipulation FFD also requires the local coordinate computa-
tion discussed above. In addition, however, the linear system (3) has to be solved.
The standard approach for this is based on computing the pseudo-inverse using sin-
gular value decomposition, which has a computational cost of 4m2n+22n3 floating
point operations [10]. Additional computational costs come from the matrix multi-
plications required to actually compute the pseudo-inverse Φ+ = VΣ+UT from
the SVD.

Within the RBF deformation technique the most expensive part is the solution of
the linear system (8), which is dense due to the global support of the chosen radial
basis functions ϕ(r) = r3. The resulting asymptotic complexity is of O(m3) when
using standard solvers for dense linear systems. Since the linear system (8) is sym-
metric but not positive definite, efficient Cholesky-type solvers are not applicable.
However, the system can still be solved efficiently by using a LDLT factorization,
which has computational costs of 1

3m
3 floating point operations. For a more com-

prehensive investigation of different solvers for RBF deformation we refer to [36].
However, benchmarking the performance by simply measuring the time it takes

to deform a given mesh is not really meaningful since the methods pre-compute
different amounts of information. Comparing the performance of control point-based
FFD to directly manipulated DM-FFD or RBFs is not feasible, since there is no
way to perform the same deformation with all three methods. In order to facilitate
a representative and objective comparison between DM-FFD and RBFs, we present
an alternative formulation of both deformation methods which allows us to fully
pre-compute the deformation. The deformation methods we investigated are linear,
i.e., they require solving a linear problem in one form or another. Therefore, the
deformations can be pre-computed by solving a sequence of m linear system (see,
e.g., [3]). Even more, the methods can be handled in a uniformmanner by expressing
the deformation in terms of handle basis functions.

The m displacement constraints δhi are given as prescribed values of the defor-
mation function d(hi) = δhi. In case of DM-FFD, the control point displacements
δcj satisfying these constraints are found by solving the linear system of (3). In case
of RBFs, we find the weights wj for the deformation function (6) by solving (8).
What we are searching for are the displacements x′i−xi = δxi for each deformable
vertex xi. Written in matrix form this becomes X = (δx1, . . . , δxk)T , where k is
the number of deformable vertices. In case of DM-FFD, X can be computed using



On Shape Deformation Techniques for Simulation-based Design Optimization 11

X = M ·C, Mij = Nj(u(xi)), (9)

where Nj(u(xi)) is the trivariate tensor-product B-spline basis function of control
point cj evaluated at point xi, and C is the matrix of control point displacements
δcj . By substituting C using (5) we can rewrite (9) as

X = M ·Φ+︸ ︷︷ ︸
B

·H,

where H is them× 3 matrix of prescribed handle displacements. Using the k ×m
matrix B we can then directly evaluate the vertex displacements in terms of handle
displacements.

The corresponding formulation for RBFs is similar: X can be computed by

X = M ·W, Mij = ϕj(xi), (10)

where W is the matrix of radial basis function weights. Based on (8) the weight
matrix W can be computed by inverting Φ, i.e., as W = Φ−1H. This yields

X = M ·Φ−1︸ ︷︷ ︸
B

·H.

Then B is the desired k ×m basis function matrix that can be used to compute the
vertex displacements from the given handle displacements.

Based on this formulation, we compare the performance of the methods by pre-
computing a deformation with 427 constraints. In Figure 6 we present the results
comparing both FFD variants in their serial and parallel (using OpenMP [25]) ver-
sions as well as RBFs. As to be expected from theory, DM-FFD offers the worst per-
formance. While parallel local coordinate computation clearly improves (DM-)FFD
performance, RBFs require the same amount of time to solve the full problem.

0

2

4

6

3

0.5

5.8

3.2

0.5

FFD (serial)
FFD (parallel)
DM-FFD (serial)
DM-FFD (parallel)
RBF

Fig. 6 Performance comparison of the deformation methods. Times in seconds. For FFD methods
a control grid of resolution 83 was used, which results in a comparable number of DoFs as the RBF
setup.



12 Daniel Sieger and Stefan Menzel and Mario Botsch

Fig. 7 Examples of common surface mesh degeneracies. Top row: low quality triangles. Bottom
row: non-manifold connectivity.

3.2 Robustness

The robustness of a deformation method describes its robustness towards defects in
the input data. Such defects can include low-quality triangles with very large or very
small angles, such as caps or needle elements, non-manifold configurations, or self-
intersections in the input mesh (see Figure 7 some for common examples). Due to
their space-based nature, FFD and RBFs are highly robust with respect to defects in
the input data. However, in the direct manipulation variant of FFD the singular value
decomposition used to compute the pseudo-inverse might also be a source for numer-
ical instabilities. In order to prevent division by zero, artifacts in the deformation, as
well as extreme distortions of the control lattice, one has to clamp the singular values
σi in (4). Figure 8 presents an example of the unwanted artifacts in the deformation
depending on different clamping values. Since a suitable clamping value for a given
deformation setup is not known a-priori, it has to be determined heuristically by the
user—thereby constituting a source of increased effort and potential failure.

Non-manifold configurations are problematic in general, since in this case the 1-
ring neighborhood of a vertex can no longer be traversed reliably. While this does
not pose a direct problem for the methods investigated, it might prevent the use of a
more efficient reduced constraint direct manipulation interface as described in [3].

3.3 Quality of Deformation

The quality of the deformation includes several aspects. On the most general level,
the deformation should be free of any unexpected oscillations or artifacts. Following
the principle of simplest shape [29], the deformation function should be smooth,
fair, and physically plausible. Furthermore, we want the deformation to maintain
mesh element quality as much as possible in order to allow for as large as possible
deformations. We note, however, that the methods we consider do not incorporate
additional mesh optimization procedures that are eventually required for particularly
large deformations.



On Shape Deformation Techniques for Simulation-based Design Optimization 13

Fig. 8 Artifacts in the deformation of a sphere due to lack of clamping of singular values. DM-FFD
with a 5 × 5 × 5 control lattice. Different clamping values: 10−10 (left) and 10−2 (right). The
handle displacements are exactly the same in both examples.

As a first benchmark we investigate the smoothness of the deformation techniques
by analyzing the curvature of a surface mesh after deformation. More specifically,
we consider mean curvature defined as

H =
κ1 + κ2

2
,

where κ1 and κ2 are the principal (maximum and minimum) curvatures of the sur-
face. Using the cotangent weight discretization of the Laplace-Beltrami operator [4]
we compute the mean curvature on for a given vertex xi of the mesh by

H(xi) =
1

2
‖∆xi‖ .

For more details we refer the reader to [4]. A color-coded mean curvature visualiza-
tion is shown in Figure 9 after performing a pre-defined deformation with both RBFs
and DM-FFD. As can be seen from the visualization, DM-FFD suffers from alias-
ing artifacts due to its lattice-based nature. The same artifacts occur in control point
FFD. In contrast, RBFs result in highly smooth deformations due to their built-in
minimization of physically-inspired energies as described in Section 2.3.

FFD results in deformations that are not necessarily physically plausible. Espe-
cially its direct manipulation variant does not optimize for a high quality deforma-
tion, but for minimization of control point movement. In general, using a lattice-
based method the shape of the deformation strongly depends on the resolution and
form of the control lattice, as shown in Figure 10. Therefore, it becomes highly dif-
ficult to predict the shape resulting from a particular deformation setup in advance.



14 Daniel Sieger and Stefan Menzel and Mario Botsch

Another problem with lattice-based methods is the continuity in case of partial
control grids. If the control grid covers only a subset of the object, non-smooth tran-
sitions between object points inside the control volume and those outside may occur
(see Figure 11, center). In such cases additional sheets of control points have to be
inserted in order to assure a smooth transition (Figure 11, right). This not only com-
plicates the setup process of FFD, it also introduces unnecessary degrees of freedom
due to bad adaptivity (see Section 3.4).

Fig. 9 Comparison of mesh smoothness after deformation based on mean curvature visualizations.
Red indicates high curvature, blue low curvature. From left to right: Setup, deformed mesh and
curvature visualizations for DM-FFD (729 control points) and RBFs (792 kernels).

Fig. 10 Dependency of the deformation on the control lattice resolution. For all examples the same
handle region was moved by the same translation.

Fig. 11 Continuity problems in FFD in case of partial control volumes. From left to right: Original
setup, non-smooth transition, smooth transition.



On Shape Deformation Techniques for Simulation-based Design Optimization 15

3.4 Adaptivity

In general, the adaptivity of a deformation method describes how well the method
is capable of approximating a certain shape with an as low as possible number of
degrees of freedom (DoFs). In the context of shape optimization the ability to dy-
namically add additional DoFs in regions of high interest is particularly important.

In order to evaluate the adaptivity we implemented a benchmark test that matches
a source shape to a given target shape. In this test case, all vertices are prescribed as
constraints, and the deformation method has to match the shape as closely as possi-
ble. For each of the methods we start with a low number of DoFs and successively
refine the method to include more and more DoFs. We stop refinement once the
number of DoFs is equal to the number of constraints.

Adaptivity can be measured best when approximating a target shape that is identi-
cal to the source shape for most vertices while having sharp local features in another
region. The target shape is shown in Figure 12. This shape is particularly demanding
since the transition from the plane to the feature area is very steep.

In case of DM-FFD we perform adaptive refinement by inserting additional con-
trol point planes in x− and y−directions in those cells containing the vertex with the
largest error. We do not perform refinement in z-direction, since in our example this
would only result in wasted degrees of freedom. As becomes clear from Figure 12,
the adaptivity of DM-FFD is generally poor, since it depends on the resolution of the
lattice being used.While increasing the resolution of the lattice leads to sufficient de-
grees of freedom to approximate fine details as well, at the same time the insertion
process also alters the deformation itself. An alternative to the current control point
refinement would be to use knot insertion.

102 103
10−20

10−15

10−10

10−5

Degrees of Freedom

A
pp

ro
xi
m
at
io
n
Er
ro
r

DM-FFD
RBFs

Fig. 12 Adaptive refinement benchmark results. Left: degrees of freedom vs. approximation error.
Right: example results. From top to bottom: target shape, DM-FFD (900 DoF), and RBFs (993
DoF).



16 Daniel Sieger and Stefan Menzel and Mario Botsch

In case of RBFs we use straightforward adaptive greedy refinement [30]. Initially,
we uniformly sample the plane with a given number of kernels. We then successively
add additional kernels at the vertices of themesh having the largest errors. The results
in Figure 12 clearly confirm that RBFs provide superior approximation accuracy
compared to DM-FFD.

3.5 Precision

The precision of a deformation method describes the accuracy in satisfying the po-
sitional constraints as prescribed by the user or optimization method. Typically, the
accuracy is either exact, only provided in a least-squares sense, or only in a qual-
itative manner. Manipulating control points of a lattice as in case of FFD can only
provide qualitative precision. Directly manipulated FFD improves on this by provid-
ing precision in a least-squares sense through the solution of (3). Finally, by solving
(8) RBFs allow for exact satisfaction of constraints, thereby offering the highest level
of precision. The quantitative results of Section 3.4 underline the differences in pre-
cision.

3.6 Volume Mesh Morphing

The ability to morph an existing volumetric simulation mesh according to a updated
CAD geometry or alongside with a changed surface mesh is a crucial feature for de-
formation techniques in simulation-based design optimization: By avoiding costly
(re-)meshing, it drastically reduces the computational cost, and it enables the con-
struction of fully automatic optimization loops. This benchmark is particularlymean-
ingful, since it accumulates results from the previous synthetic benchmarks. Even
though both FFD and RBFs allow for volume mesh morphing due to their space-
based nature, there are significant differences in the resulting mesh element qual-
ity. We present two different test scenarios involving three different mesh types: We
investigate morphing of unstructured tetrahedral and structured hexahedral meshes
according to an updated CAD geometry in Section 3.6.1. Finally, present a test-case
of the DrivAer model involving an arbitrary polyhedral mesh to used CFD compu-
tations in Section 3.6.2.

In case of DM-FFD we generate a uniform control lattice enclosing the complete
volume mesh. Unfortunately, the resolution required to satisfy given deformation
constraints as precisely as possible is not known in advance and heavily depends on
the complexity of the deformation and the geometry to be deformed. To accommo-
date for this, we investigate different grid resolutions, namely from 53, 103, 153, and
253 control points (referred to as DM-FFD-5/10/15/25 below). Therefore, the prob-
lem of automatic control grid generation is largely unsolved and a serious obstacle
for fully automatic optimization procedures.



On Shape Deformation Techniques for Simulation-based Design Optimization 17

3.6.1 Pipe Model

In this section we investigate mesh quality based on the morphing benchmarks intro-
duced in [36, 38]. Given an initial CAD surface and a volume mesh, shape variations
are created by changing geometric parameters of the CADmodel and computing up-
dated surface nodes to match the new geometry. The surface nodes are then used as
input to the morphing technique computing updated interior volume nodes. For a
more detailed description of the benchmarks we refer to [36, 38]. We choose abso-
lute morphing of the unstructured tetrahedral and structured hexahedral Pipe meshes
as a representative example and present the results by means of minimum Scaled Ja-
cobian in the volume mesh vs. percentage of parameter change in the CAD model in
Figure 14. The plots show that RBFs better preserve element quality. Note that while
the low resolution DM-FFD-5 test case results in more or less reasonable mesh qual-
ity, the constraints are not fulfilled exactly, i.e., the boundary nodes of the volume
mesh do not match the update CAD surface (see Figure 13, right for an example). In
contrast, higher resolutions are not capable of dealing with large changes due to the
increasing locality of the deformation.

Fig. 13 Pipe model morphing examples. From left to right: Initial mesh, RBF, DM-FFD-5.

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

% Parameter Change

M
in
.S

ca
le
d
Ja
co
bi
an

Pipe Tet Model–Absolute

RBF
DM-FFD-5
DM-FFD-10
DM-FFD-15
DM-FFD-25

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

% Parameter Change

M
in
.S

ca
le
d
Ja
co
bi
an

Pipe Hex Model–Absolute

RBF
DM-FFD-5
DM-FFD-10
DM-FFD-15
DM-FFD-25

Fig. 14 Pipe model morphing results. Mesh quality vs. parameter change.



18 Daniel Sieger and Stefan Menzel and Mario Botsch

3.6.2 DrivAer Model

As an application-oriented benchmark we investigate an exemplary CFD test case
for the DrivAer model. We use OpenFOAM [24] for the CFD setup and generate
the volume mesh using the snappyHexMesh utility. The resulting arbitrary poly-
hedral mesh contains 1.2M cells and 1.6M points. To investigate the resulting mesh
quality we use OpenFOAM’s checkMesh tool, which analyzes general mesh prop-
erties, such as connectivity, ordering, and orientation, but also essential mesh quality
characteristics, such as cell orthogonality, aspect ratio, and face skewness. For the
deformation setup we select three handle vertices on the car roof while keeping the
outer boundary of the volume mesh fixed. For the deformation itself we simply lift
the handle vertices upwards.

A cut view of the resulting volume mesh and car surface patch is shown in Fig-
ure 15. A summary of results as obtained by OpenFOAM’s checkMesh tool is
given in Table 2. For a detailed description of the individual mesh checks we refer
to the OpenFOAM [24] documentation. In case of RBFs the volume mesh is still us-
able and all mesh quality checks succeed. In case of DM-FFD-10 and DM-FFD-15
the meshes are still usable, but the cell orthogonality check warns about one non-
orthogonal cell that might spoil the accuracy and/or convergence of the simulation.
Furthermore, we note that for more complex deformations the 103 and 153 resolu-
tions might not be sufficient to satisfy the displacement constraints with acceptable
precision. In case of the higher resolution DM-FFD-25 setup several mesh quality
checks fail and the mesh is no longer usable for simulation at all: The mesh contains
151 high aspect ratio cells, 1353 non-orthogonal faces, 1414 incorrectly oriented
face pyramids, and 62 highly skewed faces. For all DM-FFD setups, Figure 15 again
demonstrates the strong dependence of the resulting shape on the chosen control grid
resolution.

Fig. 15 Cut-view and car surface patch of the resulting volume mesh after deformation. Original
(top left), RBF (top center), zoom to the surface (top right), DM-FFD (bottom row). In case of
DM-FFD the results for control grid resolutions 103, 153, and 253 are shown.



On Shape Deformation Techniques for Simulation-based Design Optimization 19

Aspect Ratio Cell Orthogonality Face Skewness Face Pyramids

Original 6.9 3 64.7 3 3.4 3 3

RBF 6.6 3 68.6 3 3.7 3 3

DM-FFD-10 7.0 3 71.3 ! 3.6 3 3

DM-FFD-15 7.0 3 70.7 ! 3.4 3 3

DM-FFD-25 2.5e+195 7 179.7 7 1031.8 7 7

Table 2 Results reported by OpenFOAM’s checkMesh. Successful tests are indicated by a 3 ,
warnings by ! , and errors by 7 . Numbers are given for the worst quality element in the mesh.

4 Summary & Conclusion

The results of the individual benchmarks show that there are significant differences
between the deformation methods. A compact and simplified summary of the results
is presented in Table 3. For each of the benchmarks and methods we assign either
a positive ( + ), neutral ( ◦ ), or a negative ( – ) assessment. Both FFD and DM-
FFD achieve mixed results. While DM-FFD improves upon FFD in terms of pre-
cision, computational costs increase and robustness issues might occur. Both FFD
techniques expose significant weaknesses with regards to adaptive refinement and
quality of the deformation. In contrast, RBFs score the largest number of positive
and only one neutral assessment.

However, the choice of a deformation method heavily depends on the needs of a
given design optimization scenario. If the scenario neither demands for precise con-
straint satisfaction nor for adaptive refinement but only aims for general exploration
of the design space, FFD offers a simple and robust deformation technique. In many
cases, however, exact control is highly important in order obtain valid designs that
meet production limitations such as keeping critical components fixed or deforming
them only rigidly. In such cases, we clearly recommend RBFs over both FFD and its
direct manipulation variant.

In some optimization scenarios the locality of the deformation might also be an
important aspect. Both FFD methods allow for local deformations—depending on
control grid resolution and setup as well as basis function degree. In contrast, our
RBF deformations are global due to our choice of triharmonic basis functions. While
there exist compactly supported RBFs [39], these basis functions lack the built-in
energy minimization of (7). However, in many cases a proper setup of fixed and
handle regions in the direct manipulation interface eventually provides a sufficient
degree of locality.

Naturally, all of three methods can be enhanced in several ways. In case of
both FFD methods the use of more flexible basis functions such as T-splines [32]
or truncated hierarchical B-splines [9] would drastically improve the adaptivity of
the respective methods. As for RBFs, constraining the deformation function to be
positive—similar to the bounded biharmonic weights introduced in [14]—offers an
interesting perspective for future work.



20 Daniel Sieger and Stefan Menzel and Mario Botsch

Performance Robustness Quality Adaptivity Precision

FFD ◦ + ◦ – –
DM-FFD – ◦ ◦ – ◦
RBF ◦ + + + +

Table 3 Summary of results. For each benchmark test and deformationmethodwe assign a negative
( – ), neutral ( ◦ ), or a positive ( + ) assessment.

Acknowledgments

Daniel Sieger gratefully acknowledges the financial support from Honda Research
Institute Europe (HRI-EU). Mario Botsch is supported by the German National Re-
search Foundation (DFG CoE 277: CITEC). The authors kindly thank Matthew
Staten from Sandia National Laboratories for originally providing us with Pipe mod-
els from [38].

References

1. Bechmann, D.: Space deformation models survey. Computers & Graphics 18(4), 571 – 586
(1994)

2. de Boer, A., van der Schoot, M., Bijl, H.: Mesh deformation based on radial basis function
interpolation. Computers & Structures 85, 784–795 (2007)

3. Botsch,M., Kobbelt, L.: Real-time shape editing using radial basis functions. Computer Graph-
ics Forum (Proc. Eurographics) 24(3), 611–21 (2005)

4. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Levy, B.: Polygon Mesh Processing. AK Peters
(2010)

5. Botsch,M., Sorkine, O.: On linear variational surface deformationmethods. IEEETransactions
on Visualization and Computer Graphics 14(1), 213–30 (2008)

6. Coquillart, S.: Extended free-form deformation: A sculpturing tool for 3D geometric modeling.
In: Proc. of ACM SIGGRAPH, pp. 187–96 (1990)

7. Fasshauer, G.E.: Meshfree approximation methods with MATLAB. World Scientific Publish-
ing (2007)

8. Gain, J., Bechmann, D.: A survey of spatial deformation from a user-centered perspective.
ACM Transaction on Graphics 27, 107:1–107:21 (2008)

9. Giannelli, C., Jüttler, B., Speleers, H.: THB–splines: The truncated basis for hierarchical
splines. Computer Aided Geometric Design 29, 485–498 (2012)

10. Golub, G.H., van Loan, C.F.:Matrix Computations. JohnsHopkins University Press, Baltimore
(1989)

11. Griessmair, J., Purgathofer, W.: Deformation of Solids with Trivariate B-Splines. In: Proceed-
ings of Eurographics (1989)

12. Heft, A.I., Indinger, T., Adams, N.A.: Introduction of a new realistic generic car model for
aerodynamic investigations. In: SAE 2012 World Congress (2012)

13. Hsu, W.M., Hughes, J.F., Kaufman, H.: Direct manipulation of free-form deformations. In:
Proc. of ACM SIGGRAPH, pp. 177–84 (1992)

14. Jacobson, A., Baran, I., Popović, J., Sorkine, O.: Bounded biharmonic weights for real-time
deformation. ACM Transaction on Graphics 30, 78:1–78:8 (2011)



On Shape Deformation Techniques for Simulation-based Design Optimization 21

15. Jakobsson, S., Amoignon, O.:Mesh deformation using radial basis functions for gradient-based
aerodynamic shape optimization. Computers & Fluids 36(6), 1119–1136 (2007)

16. Lamousin, H., Waggenspack, N.: NURBS-based free-form deformations. Computer Graphics
and Applications, IEEE 14(6), 59–65 (1994)

17. MacCracken, R., Joy, K.I.: Free-form deformations with lattices of arbitrary topology. In: Proc.
of ACM SIGGRAPH, pp. 181–88 (1996)

18. Manzoni, A., Quarteroni, A., Rozza, G.: Shape optimization for viscous flows by reduced basis
methods and free-form deformation. International Journal for Numerical Methods in Fluids
70, 646–670 (2011)

19. Menzel, S., Olhofer, M., Sendhoff, B.: Application of free form deformation techniques in
evolutionary design optimisation. In: Proceedings of the 6th World Congress on Structural
and Multidisciplinary Optimization (2005)

20. Menzel, S., Olhofer, M., Sendhoff, B.: Direct manipulation of free form deformation in evolu-
tionary design optimisation. In: International Conference on Parallel Problem Solving From
Nature (PPSN), pp. 352–361 (2006)

21. Menzel, S., Sendhoff, B.: Representing the change–free form deformation for evolutionary
design optimization. Studies in Computational Intelligence 88, 63–86 (2008)

22. Michler, A.K.: Aircraft control surface deflection using RBF-based mesh deformation. Inter-
national Journal for Numerical Methods in Engineering 88(10), 986–1007 (2011)

23. Moccozet, L., Thalmann, N.: Dirichlet free-form deformations and their application to hand
simulation. In: Computer Animation ’97, pp. 93–102 (1997)

24. OpenFOAM: Open Source Field Operation and Manipulation C++ libraries. http://www.
openfoam.org (2012)

25. OpenMP Architecture Review Board: OpenMP application program interface version 3.1
(2011). URL http://www.openmp.org/mp-documents/OpenMP3.1.pdf

26. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes: The Art of
Scientific Computing, 2nd edn. Cambridge University Press (1992)

27. Samareh, J.A.: A survey of shape parameterization techniques. Tech. Rep. NASA/CP-1999-
209136/PT1, NASA Langley Research Center (1999)

28. Samareh, J.A.: Aerodynamic shape optimization based on free-form deformation. In: Pro-
ceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
(2004)

29. Sapidis, N.S.: Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and
Computer-Aided Design. Society for Industrial and Applied Mathematics (1994)

30. Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large
RBF systems. Numerical Algorithms 24(3), 239–254 (2000)

31. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: Proc. of
ACM SIGGRAPH, pp. 151–59 (1986)

32. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Transac-
tion on Graphics 22(3), 477–484 (2003)

33. Sibson, R.: A vector identity for the dirichlet tessellation. In: Mathematical Proceedings of the
Cambridge Philosophical Society, vol. 87, pp. 151–155 (1980)

34. Sieger, D., Menzel, S., Botsch, M.: A comprehensive comparison of shape deformations in
evolutionary design optimization. In: Proceedings of the 3rd International Conference on En-
gineering Optimization (2012)

35. Sieger, D., Menzel, S., Botsch, M.: High quality mesh morphing using triharmonic radial basis
functions. In: Proceedings of the 21st International Meshing Roundtable (2012)

36. Sieger, D., Menzel, S., Botsch, M.: RBF morphing techniques for simulation-based design
optimization. Engineering with Computers (2013). To appear

37. Song, W., Yang, X.: Free-form deformation with weighted T-spline. The Visual Computer 21,
139–151 (2005)

38. Staten, M.L., Owen, S.J., Shontz, S.M., Salinger, A.G., Coffey, T.S.: A comparison of mesh
morphing methods for 3D shape optimization. In: Proceedings of the 20th International Mesh-
ing Roundtable, pp. 293–311 (2011)

39. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge, UK
(2005)


