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ABSTRACT

This thesis investigates shape deformation techniques for their use in design opti-
mization tasks. In the first part, we introduce state-of-the-art deformation methods
and evaluate them in a set of representative benchmarks. Based on these bench-
marking results, we derive essential criteria and features a deformation technique
should satisfy in order to be successfully applicable within design optimization. In
the second part, we concentrate on the application and improvement of deforma-
tion techniques based on radial basis functions. We present and evaluate a unified
framework for surface and volume mesh deformation and investigate questions of
performance and scalability. In the final third part, we concentrate on the integra-
tion of additional constraints into the deformation, thereby improving the overall
effectiveness of the design optimization process and fostering the creation of more
feasible and producible design variations. We present a novel shape deformation
technique that effectively maintains different types of geometric constraints such
as planarity, circularity, or characteristic feature lines during deformation. At the
same time, our method provides a unique level of modeling flexibility, quality, ro-
bustness, and scalability. Finally, we integrate techniques for automatic constraint
detection directly into our deformation framework, thereby making our method
more easily applicable within complex design optimization scenarios.
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CHAPTER 1

INTRODUCTION

We begin this thesis by providing a brief motivation for the use of computer tools
to design, develop, and manufacture complex industrial products such as cars,
aircrafts, or electronic devices. We continue with a concise introduction to the
discipline of design optimization and its manifold benefits and goals. More specifi-
cally, we describe how shape deformation methods increase the performance and
effectiveness of the optimization process. We motivate the integration of additional
constraints into the deformation as effective means to increase the usefulness of the
optimization results. Finally, we summarize our core contributions and formulate
a set of research questions that we investigate throughout this thesis.

MOTIVATION

Ever since their inception during the midth of the 20th century, computer-aided
design and manufacturing (CAD/CAM) technologies continuously changed the
product development and production processes in virtually all branches of indus-
try. What started with the use of spline-based modeling techniques for the design
of car bodies as well as aircraft fuselages and wings, is now a cornerstone in a mul-
titude of disciplines such as mechanical, electrical, and civil engineering, as well
as architectural design. The key benefit of CAD methods is that they allow for the
construction of physical artifacts—vehicles, buildings, electronic devices—of un-
paralleled complexity and performance. Even today one can observe a continuous
growth within areas such as virtual fabrication and prototype development, which
increasingly replace the construction of costly real-world prototypes and their
evaluation through time-consuming experiments. Recent emerging technologies
such as increasingly powerful and sophisticated 3D printing techniques further
demonstrate that the developments in this field will continue to profoundly change
our society’s product development and production processes.

One of the key benefits of the use of computer-based modeling and simulation
techniques is that they allow for the exploration and evaluation of different design
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prototypes at an early stage of the development process, thereby reducing the need
to actually build physical artifacts of the prototype and offering the possibility to
identify potential problems with the design in advance. The discipline of design
optimization aims at the discovery and evaluation of alternative designs with im-
proved physical or aesthetic properties. The development process typically starts
with the creation of an initial prototype using a CAD modeling tool. Depending
on the particular optimization scenario, subsequent steps create a polygon surface
mesh from the CAD model as well as a volumetric simulation mesh for physical
performance evaluation, e.g., using computational fluid dynamics (CFD) simula-
tions for aerodynamic performance calculation, or finite element methods (FEM)
for structural mechanics simulations. Design variations are then created based on
physical performance during simulation.

A challenging task within the optimization process is to provide effective means
to create alternate designs. Changing the CAD model directly is typically pro-
hibitive, since the repeated surface and volume meshing steps required for per-
forming the physics simulations are highly time-consuming. In case of complex
geometries the meshing steps might even require manual interaction by an expert.
An alternative is to generate the meshes only once and to use shape deformation
techniques to adapt the meshes of the initial design prototype directly. This way,
the design optimization process can be performed in a fully automatic and parallel
manner, which is of particular importance when using stochastic global optimiza-
tion techniques—such as evolutionary algorithms—which typically require the
creation and evaluation of a large number of design variations in order to find a
feasible solution.

We illustrate a simplified and generic design optimization loop employing shape
deformation methods in figure 1.1: An initial prototype’s performance is evaluated
using simulation. Based on the results an optimization algorithm determines
possible search directions for new design variations, which are then created using
shape deformation techniques. This process is iterated until convergence or until
a maximum number of iterations is reached and finally the resulting optimized
design is obtained.

While the use of shape deformation techniques allows to effectively create new
design variations during optimization, a major challenge remains the creation of
actually useful and feasible designs. In order to be of practical relevance the design
variations have to meet essential constraints. Production limitations may impose
constraints on the shape of components, e.g., certain parts might need to stay
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Figure 1.1: A simulation-based design optimization loop using shape deformation.

planar, circular, or cylindrical. Usability requirements typically impose additional
constraints such as a minimum height of a car door to be accessible for humans.
Especially when optimizing components with a strong influence on the visual
appeal—such as the overall outer shape of a car body—the aesthetic demands of
the designer or customer constitute important restrictions on the design. Finally,
legal or regulatory requirements eventually apply, e.g., a modern Formula One
racing car has to fulfill a multitude of technical norms and restrictions, including
exact specifications of minimum and/or maximum dimensions and distances of
certain components (FIA 2016). Similar restrictions apply for ordinary passenger
cars as well, such as exhibited by the U.S. motor vehicle safety standards and
regulations (NHTSA 1998).

Within a classical design optimization process such constraints are typically
incorporated by penalizing design variations that violate given constraints, i.e.,
during performance evaluation a penalty term is added in case of a constraint
violation. This approach, however, requires the costly creation and evaluation of
unfeasible designs. Furthermore, the formulation of appropriate penalty terms is a
non-trivial task of its own and potentially involves a certain amount of experimen-
tation until a suitable set of penalty terms and parameters is found. Alternatively,
one can explicitly check newly created design variations for constraint violations
and discard them if they do so. While this approach circumvents the need to
perform a full performance evaluation, it makes it difficult to balance between
constraint satisfaction and potential performance improvements: In some cases
a slight violation of a certain constraint might result in significant performance
gains and therefore might be still acceptable or even desirable.
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In contrast to both approaches, we propose to use constrained deformation tech-
niques in order to incorporate the given constraints directly into the deformation.
This approach effectively prevents infeasible designs from being created and evalu-
ated, thereby increasing the overall performance and effectiveness of the design
optimization process. Furthermore, the use of constrained deformation methods
also eases the setup procedure for the engineer since constraints can be specified
intuitively on the design rather than through the custom formulation of penalty
terms.

CONTRIBUTIONS

The major goal of this thesis is to investigate the use of shape deformation methods
within design optimization, with a particular focus on evolutionary optimization
and—in the end—the incorporation of geometric constraints into the deformation.
In order to meet this goal, we formulate a set of three research questions that we
investigate and provide answers to throughout this thesis:

1. What is a good shape deformation technique for design optimization?
We investigate state-of-the-art deformation methods, analyze and
compare them in representative synthetic and application-oriented
benchmarks, provide a detailed assessment of their individual
strengths and weaknesses. Our thorough analysis of existing meth-
ods reveals significant differences between individual techniques and
allows us to derive essential criteria a deformation method should
satisfy in order to be successfully applicable within design optimiza-
tion tasks.

2. How can we apply and improve existing techniques?

We analyze shortcomings in traditional design optimization
processes and present a unified framework for combined surface
and volume mesh deformation in accordance to changes in the
corresponding parametric CAD geometry. We investigate the
prevention of self-intersections through successive splitting, and
show how to boost deformation performance and scalability
through the use of advanced linear solvers.



3. How can we incorporate additional constraints into the deformation?

We devise a novel shape deformation method that directly integrates
geometric constraints into the deformation process. While main-
taining the quality and robustness of existing methods our new
technique provides drastically improved modeling flexibility and
scalability. Finally, in order to simplify the setup process of the defor-
mation method we integrate automatic constraint detection based
on geometric primitive fitting.

OUTLINE

The structure of this thesis follows the above research questions and is organized
into three parts: Shape deformation methods, advanced deformation methods
based on radial basis functions, and constrained deformation. We begin with an
introduction of basic concepts as well as a review of related work in chapter 2.
In the first part, we introduce state-of-the-art deformation methods (chapter 3)
and analyze their individual strengths and weaknesses in a series of representative
synthetic benchmarks (chapter 4). We conclude our analysis and evaluation by
applying the most promising methods within a prototypical evolutionary design
optimization scenario in chapter s.

Based on the benchmarking results of the first part, we promote the use of
scattered data approximation methods for shape deformation in the second part.
We present advanced deformation techniques based on radial basis functions for
design optimization in chapter 6. This includes a unified framework for combined
surface and volume mesh deformation according to a modified CAD geometry,
the prevention of self-intersections through splitting, as well as the use of advanced
linear solvers for increased performance and scalability. We evaluate our framework
by comparing it to other recent mesh deformation methods in chapter 7 and show
that our approach achieves high quality results more reliably and robustly.

In the third part, we investigate the integration of additional constraints into the
deformation process. To this end, we devise a novel shape deformation method
based on moving least squares approximation (chapter 8). Our new method offers
a high level of modeling flexibility, deformation quality, and scalability. At the same
time, we directly incorporate constraints into the deformation, thereby fostering
the creation of more feasible design variations during the optimization process. In
order to make our method more easily applicable, we investigate methods for the
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automatic detection of geometric constraints, thereby easing the setup procedure
for the engineer. We compare our new method to our previous method in repre-
sentative benchmarks and demonstrate its applicability in practical deformation
examples. Finally, we conclude this thesis with a summary and discussion, and
outline promising directions for future research.



CHAPTER 2

BACKGROUND

The primary goal of this chapter is to provide an introduction to shape deformation
in general as well as to its application within design optimization in particular. We
introduce key concepts employed throughout this thesis and provide a classification
of different deformation methods. We describe the different interfaces used to
control the deformation within both interactive modeling scenarios as well as
design optimization tasks. At the same time, we review and discuss the current
state of the art, and provide references to relevant surveys and introductory texts.
Note, however, that we provide more detailed references for the individual topics
and methods covered in this thesis within the corresponding chapters and sections.

21 SHAPE DEFORMATION

The manipulation of geometric shapes is a core task in geometric modeling, com-
puter graphics, as well as several engineering disciplines. Consequently, shape
deformation methods have been subject to extensive research, and a wide variety
of techniques have been developed. However, since covering all of these methods
in sufficient detail is beyond the scope of this thesis, we concentrate on a general
overview and classification, as well as the introduction of key concepts frequently
employed. Where appropriate, we refer to existing introductions and surveys, and
we provide detailed references for the individual deformation methods covered in
this thesis in the corresponding sections of chapter 3.

On a very abstract and general level, we can describe the task of shape defor-
mation as follows: Given a concrete geometric representation of a model as well
as a set of input parameters, compute an updated representation that conforms
to some desired properties. In this general context, the geometry representation
could be anything from a parametric CAD model, to an implicit surface, a polygon
surface mesh, or a volumetric simulation mesh. The input parameters typically
correspond to displacements specified by the user. Alternatively, they could also
be the boundary conditions of a physical simulation used to compute the deforma-



Chapter 2 Background

tion. The desired properties vary widely depending on the particular application
domain. Typical examples include the satisfaction of user-specified displacement
constraints, physical plausibility, smoothness of the resulting shape, or visual
appeal. In the following, we classify deformation methods based on the represen-
tations they operate on, their input parameters, as well as on how the deformation
is actually computed.

On a fundamental level, we can classify deformation methods into two different
classes: The first class are deformations based on actual physical simulations, such as
presented in the seminal work of Terzopoulos et al. (1987). The second class employs
purely geometric methods, such as the spline-based free-form deformation of
Sederberg and Parry (1986). While physics-based methods inherently yield highly
realistic results, they also require increased modeling effort and computation time,
and they typically do not provide a very fine-grained level of control to the user.
In contrast, geometric approaches typically only aim at physical plausibility and
smoothness of the deformation, are rather simple to compute, and allow for more
precise user control. In the context of design optimization, the precise control over
the deformation is a particularly important aspect, e.g., in order meet production
or usability requirements. Similarly, the ability to explore design variations that
are outside of the space of shapes obtainable by physical simulation is important
for discovering completely novel designs. Therefore, we focus on geometric—but
physically inspired—methods throughout this thesis and refer the reader to the
survey of Nealen et al. (2006) for an overview of physically-based deformation
methods.

As a second step, we classify techniques by the type of the numerical problem
they actually solve in order to compute the deformation, i.e., whether it is a lin-
ear or a non-linear one. While non-linear methods provide realistic results for
deformations involving large rotational components, their computational costs
and implementation complexity are drastically higher than that of linear methods.
The selection of methods considered in this thesis is highly driven by our appli-
cation domain—design optimization. Since the deformations occuring during
an optimization procedure typically are rather small, we only have to deal with
rather small-scale adjustments of the geometry without large rotations. Therefore,
it is only reasonable to limit our investigation to linear deformation methods, i.e.,
approaches that solve a linear system in one form or another in order to compute
the deformation.
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As outlined in our general description of shape deformation a rather fundamen-
tal characteristic of a particular technique is the type of geometry representation
the method operates on. Within a simulation-based design optimization scenario
the initial prototype of a design is typically created using a parametric CAD mod-
eling tool. However, creating new design variations directly based on the CAD
model is typically prohibitive, since such an approach would require subsequent
remeshing steps for each new design variation created. See the work of Konig
and Wintermantel (2004) for an investigation of CAD-based evolutionary design
optimization tools and the difficulties associated with such an approach. While
recent advances in isogeometric analysis (Cottrell et al. 2009) and its approach
to solve the simulation problem directly based on the CAD model give hope for
future advancements in this direction, we concentrate on more traditional settings
in this thesis. Therefore, we investigate methods operating on discrete geometry
representations such as polygon surface meshes or volumetric simulation meshes
in the following sections.

2.1.1 Mesh-based Surface Deformation

Common target shapes for design optimization are composed of sheet metal sur-
faces, such as car bodies, aircraft wings, or ship hulls. Probably the most widely used
discrete geometry representation for such surfaces are triangle meshes. Therefore,
we concentrate on mesh-based surface deformation techniques first. Mathemati-
cally, we can describe the deformation of a given triangle surface mesh 7 into a
target mesh 7' through a deformation functiond : 7 — R* which defines a 3D dis-
placement vector & for each vertex v with associated 3D coordinates x of the surface.
After computing the deformation, we obtain the deformed mesh 7' by evaluating
the deformation function for each vertex of the mesh,ie., 7/ = {x + d(x) | x € T}.
Surface deformation techniques use the individual vertex positions as degrees
of freedom, which allows for highly flexible control over the resulting deforma-
tion behavior. At the same time, this also makes them dependent on the mesh
complexity as well as sensitive to mesh quality, i.e., defects in the connectivity or
degenerate triangles. For a detailed overview of surface-based techniques we refer
to the survey of Botsch and Sorkine (2008) and the textbook of Botsch et al. (2010).
As a representative of surface deformations, we investigate the thin shell technique
of Botsch and Kobbelt (2004b) in more detail in section 3.1.
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Figure 2.1: Surface deformation using a handle-based direct manipulation interface: The
surface is divided into three distinct regions: The gray region F is kept fixed while the user
manipulates the golden handle region 7, and the blue deformable region D is updated
according to the deformation method, as shown on the right.

During surface deformation the user—being either a designer or an optimiza-
tion algorithm—directly manipulates the vertices of the mesh. However, since the
manipulation of individual vertex positions becomes rather tedious for complex
models, we need a reasonably flexible, precise, and intuitive interface for speci-
fying and controlling the desired deformation. To this end, we employ a handle
metaphor (Kobbelt et al. 1998; Botsch and Kobbelt 2004b), where we distinguish
three types of regions on the surface: The handle region J( is directly displaced by
the user. The fixed region J stays in place. The deformable region 2 is updated
according to the deformation method while satisfying the prescribed displace-
ment constraints given by /' and 7. An example of this modeling metaphor is
illustrated in figure 2.1, with the handle region  in gold, the fixed region J in
gray, and the deformable region 2 in blue.

2.1.2 Volume Mesh Deformation

Within simulation-based design optimization the volumetric meshes required to
actually perform physical simulations are a primary target geometry representation.
In this context, the resulting mesh element quality after deformation becomes a
critical factor: The deformation should preserve element quality as best as possible
in order to maintain a mesh that is still feasible for obtaining reliable and accurate
simulation results. The exact quality requirements heavily depend on the given
application scenario as well as simulation and solver type. Consequently, such
demands are not trivial to generalize. On a very basic level, however, the mesh
should at least be free of inverted elements, i.e., the determinant of each element
Jacobian should be positive (Knupp 2000).

10
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The recent work of Staten et al. (2011) provides a comprehensive survey and
comparison of volume mesh deformation approaches frequently used in the engi-
neering community. The authors benchmark six volume deformation techniques
based on a set of test cases with varying complexity and topology, including un-
structured tetrahedral as well as both structured and unstructured hexahedral
meshes. The methods covered in their benchmark can be roughly classified into
three categories: Approaches based on generalized barycentric coordinates, mesh
smoothing techniques, and mesh-based variational methods that minimize cer-
tain smoothness energies. Most of these techniques take updated boundary node
positions as input and compute the new locations of interior volume mesh nodes
from these boundary constraints.

Approaches based on barycentric coordinates determine the interior nodes as a
linear (affine or convex) combination of the boundary nodes through a generaliza-
tion of linear barycentric interpolation (Sukumar and Malsch 2006). Examples
are Wachspress coordinates (Wachspress 1975), mean value coordinates (Floater
et al. 2005), harmonic coordinates (Joshi et al. 2007), and maximum entropy co-
ordinates (Sukumar 2004; Hormann and Sukumar 2008). See the recent work
of Nieto and Susin (2013) for a comprehensive survey. The Simplex-linear method
introduced along with the benchmarks of Staten et al. (2011), being a generaliza-
tion of BMSWEEP (Staten et al. 1999), as well as its extension to natural neighbor
interpolation (Sibson 1981), also belong to this category. While these approaches
typically have rather simple geometric constructions and therefore are easy to
implement and efficient to compute, the resulting deformations eventually are not
smooth enough to reliably preserve mesh element quality.

Mesh smoothing methods adjust interior node locations in order to explicitly
optimize element quality (Knupp 2000; Shontz and Vavasis 2003; Knupp 2008),
where the Mesquite framework (Brewer et al. 2003) offers implementations based
on mean ratio, untangling, and matrix condition number (Knupp 2000). In the
context of mesh deformation, the updated boundary nodes act as fixed constraints
while the optimization process determines the interior node locations. The mesh
smoothing methods evaluated in Staten et al. (2011) worked well for small geomet-
ric changes, but were lacking robustness for larger deformations. In comparison,
the LBWARP method (Shontz and Vavasis 2003), a weighted Laplacian smoothing
method based on the log-barrier technique, gives considerably better results, but
is computationally more complex.

11
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Mesh-based variational methods compute smooth harmonic or biharmonic de-
formations by solving Laplacian or bi-Laplacian systems (Baker 2002; Helenbrook
2003), which is numerically more robust than most mesh smoothing techniques.
The finite element-based FEMWARP technique (Baker 2002), which computes a
harmonic deformation, was generalized from tetrahedra to hexahedra by Staten
et al. (2011), and turned out to be the most successful approach in Staten’s bench-
marks. Note that harmonic coordinates of Joshi et al. (2007) are closely related to
these approaches, since they are also derived by solving a Laplacian system.While
the deformations produced by mesh-based variational methods tend to preserve
element quality well, they have to be custom-tailored to each mesh element type,
e.g., tetrahedral or hexahedral.

2.1.3 Space Deformation

In contrast to the mesh-based surface and volume deformations described above,
so-called space deformations do not compute the deformation on the mesh directly,
but in the embedding space Q surrounding the object. The object is then deformed
by deforming the embedding space around an object, thereby deforming the
object implicitly. From a mathematical point of view a space deformation is a
functiond : Q ¢ R®> — R® that maps each point in the embedding space to a
certain displacement 8. Assuming we are given such a space deformation function
and an arbitrary discrete geometric model M with point coordinates x € R>.
We can then transform M into the deformed model M’ by computing updated
point locations x’ = x + d(x) for each original point x € M. In figure 2.2, we
illustrate space deformations of different geometry representations of the Fandisk
model, including an unstructured point set, triangle and quad surface meshes, a
tetrahedral volume mesh, as well as a hexahedral voxel representation.

Surveys on space deformation techniques have been presented by Bechmann
(1994) as well as Gain and Bechmann (2008). While the former concentrates on
building a mathematical formalism for the different methods, the latter focuses on
the interactive manipulation of a model by a designer. The work of Angelidis and
Singh (2006) also provides a survey of space deformation techniques, but with a
particular focus on different modeling operations and advanced user interfaces.
The textbook of Botsch et al. (2010) as well as the tutorial notes of Sorkine and
Botsch (2009) also contain an overview of space deformation methods.

12
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Figure 2.2: Space deformation of different representations of the Fandisk model. Top left to
bottom right: Original model, deformed point set, triangle mesh, quad mesh, tetrahedral
mesh, and voxel model.

13
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Figure 2.3: Control structures: Control grid, surface mesh, point sampling.

We can classify space deformation techniques by how they construct the defor-
mation function d. Typically, a control structure such as a volumetric lattice or a set
of points is blended with some form of smooth basis functions, see figure 2.3 for ex-
ample control structures. Classical spline-based free-from deformation techniques
employ a volumetric structure such as a regular or adaptive grid (Sederberg and
Parry 1986; MacCracken and Joy 1996), or a polyhedral space decomposition such
as a tetrahedral mesh (Moccozet and Thalmann 1997). Cage-based deformations
based on barycentric interpolation use a triangular surface mesh enclosing the
model (Ju et al. 2005). Skinning methods based on skeletal structures (Jacobson
et al. 2014) are widely used in character animation. Finally, point- or kernel-based
techniques (Botsch and Kobbelt 2005; McDonnell and Qin 2007) allow to freely
position control points in space. We cover different types of space deformations
and their variations in more detail in chapter 3. Note, however, that we deliber-
ately omit skeleton-based methods, since these are more suitable for specialized
applications such as character animation and not easily applicable within a general
design optimization scenario.

In contrast to mesh-based methods, space deformation techniques typically use
the positions of the individual control points ¢ constituting the control structure
as DoFs to steer the deformation. This also implies that space deformations usually
only provide indirect manipulation of the target design through manipulation of the
respective control structure. This type of interface has two significant drawbacks:
First, since the influence on the object is only indirect, it is difficult to exactly
prescribe required displacement constraints on the object. Second, with increasing
resolution of the control structure its setup and manipulation becomes increasingly
difficult and tedious for the designer. Therefore, we investigate the combination of
space deformations and direct manipulation interfaces in chapter 3.

14
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Figure 2.4: Constrained deformation example (from left to right): Setup, deformation
without and with circularity constraint (marked in orange).

2.1.4 Constrained Deformation

A rather recent trend in the development of shape deformation methods is the
integration of additional constraints. Such techniques are particularly interesting
for design optimization, since the maintenance of characteristic geometric features
and the adherence to critical production limitations are a major challenge for the
successful application of a design optimization process.

Early examples of constrained deformation methods are the feature-preserving
surface deformation technique of Masuda and colleagues (Masuda et al. 2007),
as well as the iWires system (Gal et al. 2009) for the deformation of man-made
objects. More recently, the latter approach was generalized to component-wise
controllers (Zheng et al. 2011), and the work of Habbecke and Kobbelt (2012)
presents an efficient technique for the linear analysis of non-linear constraints
in geometric modeling systems. Yang et al. (2011) present a method for shape
space exploration of constrained meshes. Deng et al. (2013) extended this approach
towards exploration of local modifications of constrained meshes. Similar in spirit
of the technique of Masuda et al. (2007) is the constrained surface deformation
technique described by Fu et al. (2012). More recently, Tang et al. (2014) introduced
a technique for form-finding in polyhedral meshes subject to user-prescribed
constraints such as, e.g., planarity of mesh faces. For a comprehensive overview of
geometry processing techniques incorporating constraints we refer to the recent
survey of Mitra et al. (2013).

However, all of the above methods share a common limitation: They are inher-
ently surface-based and therefore their applicability to design optimization tasks is
rather limited. A notable exception in this regard is the projection-based constraint
processing technique of Bouaziz et al. (2012) and its later extension (Deuss et al.
2015), since it allows to prescribe general constraints on arbitrary geometric data
sets. We adapt and extend their approach for constraint preservation into our

15
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space deformation framework in chapter 8, thereby fostering the creation of more
feasible design variations during design optimization.

2.2 DESIGN OPTIMIZATION

As already outlined in the introduction, the general aim of design optimization is
the exploration of design variations that exhibit some form of improved properties
such as physical performance or aesthetic appeal. The success and effectiveness of
a design optimization process depends on the interplay of three core components:
An optimization algorithm, effective means to create design variations, and the
formulation of a suitable cost or fitness function capturing the property to be opti-
mized. In the following, we provide a brief overview of each of these components.
However, for a more comprehensive introduction to design optimization, we refer
to the textbooks of Delfour and Zolésio (2011), Held (2009), and Mohammadi and
Pironneau (2010).

As for the optimization algorithm a wide variety of methods is used in prac-
tice. Gradient-based techniques (Nocedal and Wright 2006; Mohammadi and
Pironneau 2010) aim to directly minimize the given cost function. While such ap-
proaches are highly effective in terms of computational cost and convergence rate,
they easily get stuck in local minima. In contrast, stochastic global optimization
methods such as evolutionary algorithms (Béck 1996) aim at finding a global opti-
mum of the fitness function, albeit at the cost of drastically increased computation
time and slower convergence rates. In chapter 5, we describe the application of
evolutionary algorithms for the solution of design optimization problems in more
detail.

The formulation of the cost function heavily depends on the target property
being optimized and includes characteristics such as aerodynamic performance or
mechanical stability. In particular, the simultaneous optimization of multiple and
even contradicting cost functions has gained increasing attention and is known as
multidisciplinary design optimization. Besides pure performance characteristics the
cost function typically takes into account additional constraints on the resulting
shape, such as minimum or maximum widths or heights of certain components,
which are necessary to meet production or usability limitations. As an example,
only optimizing the aerodynamic drag of a car body would result in a raindrop-
like shape that is not only difficult to produce but also rather impracticable and
unattractive for the customer.
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2.2 Design Optimization

As for the creation of design variations, we concentrate on methods that operate
on a discrete geometry representation such as a triangle mesh. Early approaches
simply used the individual 3D point coordinates as degrees of freedom for the
optimization algorithm. However, with increasing model complexity the number
of points in the design—and therefore the number of degrees of freedom for the
optimization—becomes too large to be feasible. Therefore, much attention has
been given to so-called representation or parametrization methods representing
the target design through a drastically smaller set of parameters which are then
modified by the optimization algorithm.

A survey of shape parametrization techniques in the context of design optimiza-
tion was presented by Samareh (2001). In recent years, the application of deforma-
tion methods from computer graphics has gained increased attention (Samareh
2004; Menzel et al. 2005, 2006; Menzel and Sendhoff 2008). In particular, free-
form deformation now is a well-established tool and is available in commercial
design optimization software packages such as DEP Morpher (Detroit Engineered
Products 2015) or Sculptor (Optimal Solutions 2015). Yamazaki et al. (2010) investi-
gated direct manipulation methods for geometry parametrization in the context of
airfoil optimization. Similarly, G. R. Anderson et al. (2012) investigate lattice-based
deformations with additional constraints for airfoil optimization. Finally, shape
deformations based on radial basis functions (RBFs) have gained increasing atten-
tion, especially in the context of airfoil optimization (Boer et al. 2007; Jakobsson
and Amoignon 2007; Michler 2011). More recently, RBF deformations also became
available as an extension for ANSYS Fluent (Biancolini 2015).
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PART I

SHAPE DEFORMATION FOR DESIGN
OPTIMIZATION

This part investigates the first research question laid out for this thesis:
What is a good shape deformation technique for design optimization?
In order to provide a well-founded answer, we begin with an intro-
duction of several state-of-the-art deformation methods (chapter 3).
We will then analyze the individual strengths and weaknesses of these
methods in a series of synthetic benchmarks (chapter 4), as well as
an application-oriented benchmark based on the evolutionary design
optimization of a passenger car (chapter 5).






CHAPTER 3

SHAPE DEFORMATION METHODS

This chapter introduces state-of-the-art deformation techniques for their use in
design optimization. In order to obtain a diverse overview, we investigate a wide
variety of methods, including a mesh-based surface deformation technique as well
as multiple space deformation techniques employing difterent types of control
structures and blending functions: We first introduce thin-shell deformation as a
representative of a physically-inspired surface deformation method. We then cover
different variants of classical free-form deformation, since these techniques are the
de-facto standard in commercial modeling packages as well as industry-strength
design optimization tools such as DEP Morpher (Detroit Engineered Products
2015) or Sculptor (Optimal Solutions 2015). As a generalization of free-form de-
formation employing a more flexible control structure and different blending
functions, we include cage-based deformations based on mean value coordinates.
Finally, we introduce deformations based on radial basis functions as a representa-
tive of a point- or kernel-based technique.

31 THIN SHELL DEFORMATION

Common target prototypes in design optimization represent sheet metal sur-
faces such as car bodies, aircraft wings, or ship hulls. Therefore, we begin our
investigation with a deformation technique particularly suitable for deforming
structures of this type. The thin shell deformation method introduced by Botsch
and Kobbelt (2004b) allows for the flexible modeling of surface deformations
based on physically-inspired energies, e.g., to model the resistance of the design
towards stretching and bending forces. As an illustration of the method’s model-
ing flexibility we show different deformation examples and the effect of varying
sensitivity towards stretching and bending in figure 3.1.

In the following, we introduce the basic ideas and theory behind the thin shell
deformation method. However, for a more comprehensive treatment we refer to
the original publication (Botsch and Kobbelt 2004b), the survey of Botsch and
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Chapter 3 Shape Deformation Methods

Figure 3.1: Shell-based deformation of a plane. Left: Pure bending minimization (y, =
1,9, = 0). Center: Pure stretching (y, = 0,y, = 1). Right: A mixture of bending and
stretching (y, = 10,y = 1).

Sorkine (2008), as well as the textbook of Botsch et al. (2010). The basic idea
behind this method is that the surface deforms like a thin shell, i.e., similar to a
thin plate of metal. To achieve this kind of behavior we formulate a suitable energy
functional measuring resistance towards stretching and bending and construct
a deformation function d: 7 — R® that minimizes this energy while satisfying
the user-defined modeling constraints of our handle-based modeling interface,
see figure 3.1 for an illustration.

As described in Botsch et al. (2010), we can measure the intrinsic geometric
properties such as lengths, areas, and curvatures of a smooth parametric surface
§ in terms of the first and second fundamental forms I(u, v) and I(u, v). Conse-
quently, we can formulate an elastic thin shell deformation energy (Terzopoulos
et al. 1987) in terms of differences of the first and second fundamental forms of the
original and deformed surfaces § and §':

E[8'] = ”st [T (u,v) — I(u, v)||;

+ ¥ | (1, 0) = W, )2, du dv.

(31)

Within this formulation the parameters y, and y, determine the sensitivity towards
stretching and bending. Since equation (3.1) is a nonlinear energy its minimization
is computationally expensive and typically prohibitive for an interactive modeling
scenario. However, we can simplify equation (3.1) by substituting the fundamental
forms with partial derivatives of the deformation function d (Celniker and Gossard
1991; Welch and Witkin 1992). This leads to the simplified shell energy

Eld] = ”Qy (Idy (> 0)I + I, (11, )I)
+ Vo (I, (1, VI + 21y, (11, V)17 + |y, (1, v)?) dut d,

(3.2)
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3.1 Thin Shell Deformation

where we employ the convention thatd,, = %d denotes the first partial derivative

2
with respect tou and d,,,, = %d denotes second order mixed partial derivatives
with respect to u and v . Applying variational calculus yields the corresponding
Euler-Lagrange equation that minimizes equation (3.2):

—y,Ad + y,A°d = 0. (3.3)

When deforming triangle meshes 7 we can discretize equation (3.3) using the
discrete cotangent Laplacian (Meyer et al. 2003) and can transform equation (3.3)
into a linear system of equations with the displacements §; of the deformable
vertices being the unknowns. Since we know the prescribed displacements of
the handle and fixed vertices h; € £ U & in advance, we can move them to
the right-hand side b of the system. Let L and L* be the (bi-)Laplacian matrices
containing the required cotangent weights. The resulting linear system then is

8 b

[~y L+p, L] 1| = | ] (3.4)
s by,
D B

where D and B are n x 3 matrices with n being the number of deformable vertices.
Consequently, we have to solve the system three times for the different right-hand
sides.

In our implementation of thin shell deformation, we use the sparse Cholesky
factorization of CHOLMOD (Chen et al. 2008) to solve the linear system of equa-
tion (3.4). In order to increase interactivity, we reduce the fixed and handle vertices
to those being in a 2-ring neighborhood of a deformable vertex since other fixed
or handle vertices do not influence the solution (Botsch and Kobbelt 2004b). In an
interactive deformation system the boundary constraints—the right-hand side of
equation (3.4)—change whenever the user manipulates the constraints. Therefore,
we can pre-factorize the matrix only once, but we still need to solve for the different
right-hand sides in each frame. However, we can circumvent this by restricting
the handle deformations to affine transformations only and precomputing a set
of special basis functions, see Botsch and Kobbelt (2004b) for details. This way
we only have to evaluate the basis functions for each deformation step, thereby
drastically increasing the interactivity of the system.

While thin shell deformation provides flexible control over the deformation
behavior, it is also sensitive to the quality and number of triangles in the mesh.
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Chapter 3 Shape Deformation Methods

Furthermore, due to its surface-based nature, the method is not capable of deform-
ing a volumetric simulation grid along with the surface—a capability particularly
important in design optimization. In the following, we therefore concentrate on
space deformation methods being independent of the underlying geometry repre-
sentation.

3.2 FREE-FORM DEFORMATION

A well-established deformation technique that has been widely used in both
academia and industry is free-form deformation (FFD). The basic idea of the
technique is to embed the target object into a volumetric control lattice and to
deform it based on trivariate tensor-product Bézier or B-spline basis functions.
Since it is widely used for both shape optimization in general (Manzoni et al. 2012;
Samareh 2004) as well as simulation-based design optimization in particular (Men-
zel et al. 2005, 2006; Menzel and Sendhoft 2008; Olhofer et al. 2009; Sieger et al.
2012), this technique constitutes the starting point of our investigation of space
deformation methods. Before describing the method in detail, we first review
variations and extensions of the technique.

Free-form deformation using Bézier basis functions was originally introduced by
Sederberg and Parry (1986). Since the global influence of Bézier basis functions—
and hence of the deformation—limits the applicability of the technique, Griessmair
and Purgathofer (1989) extended the approach to perform local deformations based
on B-spline basis functions. An extension to more flexible control lattices, in partic-
ular cylindrical ones, has been proposed by Coquillart (1990). This approach was
later extended to control lattices of arbitrary topology (MacCracken and Joy 1996).
Free-form deformations using more flexible non-uniform rational B-splines are
described by Lamousin and Waggenspack (1994). A highly flexible but computa-
tionally involved variant of FFD based on a 3D-Delaunay triangulation, its Voronoi
dual, and Sibson coordinates (Sibson 1980) has been presented by Moccozet and
Thalmann (1997). More recently, a variant of FFD using T-splines (Sederberg et al.
2003) as basis functions—thereby allowing for local refinement of the control
lattice—has been presented by Song and Yang (2005).

The basic idea of classical FFD is based on embedding the object to be deformed
in a parallelepiped lattice and deforming it using trivariate tensor-product Bézier
or B-spline functions. The procedure to perform free-form deformation can be
divided into several steps. First, a control lattice has to be generated and adapted
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3.2 Free-form Deformation

Figure 3.2: Free-form deformation applied to the Fandisk model. Left: The original model
M is embedded in a regular lattice of control points (grey). Right: After moving the
selected control points (golden), we compute the updated object points x’ by evaluating
the FFD space deformation function dgy for the local coordinates u of the point x.

to the deformation scenario at hand. Second, the local coordinates with respect to
the control lattice have to be computed. Third, the user manipulates the control
grid. Fourth, the system computes the updated object points.

The computation of local coordinates for each point x € M to be deformed
is a central step. Afterwards, each of these points can be expressed as a linear
combination of lattice control points ¢;j;, and basis functions ¢;:

-3

)
=0 j

Mz

Y €iepi (%)) (1 () oy (w3 (x)),
0 k=0

where (u; (x), u,(x), u;(x)) are the local coordinates of x with respect to the control
lattice, and I, m, n are the numbers of control points in each respective direction.
For the sake of simplicity, we define

u(x) = (uy (%), uy (%), u3(x)), @, (U(x)) = @; (111 (x)); (14, (%)) (113 (%)),
as well as

8}7 = Sijk = Ci,jk ~ Cijk>

where ¢/;; denotes an updated control point location. We then define the FFD
space deformation function as

dig(x) = ) 8,0,(u(x)).
3
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Chapter 3 Shape Deformation Methods

Finally, the deformation is performed by moving the control points and computing
the updated object point locations, as we illustrate in figure 3.2.

In our implementation of FFD we use cubic B-splines with a uniform knot vector.
While this type of basis functions requires an iterative root-finding technique such
as a Newton method (Press et al. 2007) for computing the local coordinates, the
important advantage is the capability to perform deformations with local influence
only, e.g., in order to restrict the deformation to a given region of interest in a
design optimization task. Since the local coordinate computation is independent
for each object point it is trivial to parallelize.

3.3 DIRECT MANIPULATION FFD

In an interactive modeling system the manipulation of control points to perform a
deformation becomes a tedious task—especially when using a complex control
lattice with a large number of control points. A more flexible and intuitive interface
for controlling a deformation is oftered by direct manipulation approaches, as
introduced for FFD by Hsu et al. (1992). Within direct manipulation FFD (referred
to as DM-FED for short) the user directly moves the object points instead of moving
control points. The modeling system then computes control point displacements
so that the desired object point positions are matched as precisely as possible. We
show an example deformation of the Fandisk model using DM-FED in figure 3.3,
where we use the handle-based interface of figure 2.1 to control the deformation.

Direct manipulation interfaces are not only beneficial within an interactive
modeling scenario, they can also be used effectively within simulation-based
design optimization, as has been shown for direct manipulation FFD by Menzel
etal. (2006). Due to the more direct influence of the parameters determined during
optimization on the design, using such an interface can result in drastically faster
convergence of the optimization process. Furthermore, in contrast to classical FFD,
the ability to choose an arbitrary object point or handle region for optimization
offers increased flexibility.

Within a direct manipulation interface the user—be it an engineer or an opti-
mization algorithm—prescribes a set of m displacement constraints {b,, ..., b,,}
at handle points h; € ' U 7, for which the deformation function has to satisty
certain displacement values d(h;) = h] — h; = b,. We then compute the displace-
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3.3 Direct Manipulation FFD

Figure 3.3: Direct manipulation FFD of the Fandisk model using a handle-based interface.
We lift the top handle while keeping the bottom fixed. The system automatically com-
putes the control point displacements necessary to satisfy the prescribed displacement
constraints.

ments {8, ..., 8, } of the n control points satisfying the prescribed displacements
by solving the linear system

pr(u(hy) ... @,(uhy)] [8] bi

: : =1 (3:5)
@1 (u(hy,) ... ¢,uh,)| |8 by,
@ D B

Since the linear system in equation (3.5) can be over-determined as well as under-
determined, it is typically solved by computing the pseudo-inverse @* of the basis
function matrix @. This is typically done by performing a singular value decom-
position (SVD) (Hsu et al. 1992; Golub and Van Loan 2013) so that @ = uzvT,
where U is a m x m orthogonal matrix, X is a m X n diagonal matrix containing the
singular values of @, and V' is a n x n orthogonal matrix. The pseudo-inverse of @
then is @+ = VZ*UT, where we can compute the pseudo-inverse of the diagonal

matrix X as
1 r. .
—, ifi=jAo; #0,
(2+)ij = % . : (3~6)
0, otherwise,

where o; is the i-th singular value of @. We note that for values close to zero o;
has to be clamped in order to prevent numerical instabilities. Once @* has been
computed the control point displacements can be computed by

D = ®+B) (3‘7)
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Chapter 3 Shape Deformation Methods

where D is the matrix of control point displacements and B is the matrix of
constraint displacements. However, solving for D using the pseudo-inverse has its
drawbacks. If the system is under-determined, a least-norm solution is found, i.e.,
the amount of movement of the control points ||§;| is minimized. If the system is
overdetermined, a least-squares solution is found, i.e., the error in satisfying the
specified constraints is minimized. This means that depending on the resolution of
the control lattice the system might not be able to satisty the constraints specified
by the user in an exact manner. In both cases, however, the solution does not
necessarily result in a physically plausible deformation.

3.4 CAGE-BASED DEFORMATION

An extension of the concept of free-form deformation are cage-based deformation
methods. Instead of embedding the model within a regular volumetric control grid,
it is enclosed by an irregular triangular surface mesh called control cage. Typically,
the cage is much coarser than the mesh of the original model. In comparison to
the volumetric control grids used in FFD, control cages allow for a more tight
matching between the original model and the controlling structure. The increased
flexibility of cage deformations stems from the use of more flexible generalized
barycentric coordinates instead of Bézier or B-spline basis functions as used in
free-form deformation.

Cage-based deformation was originally introduced by Ju et al. (2005). The au-
thors derive and employ a generalization of mean value coordinates (Floater et al.
2005) to triangular surface meshes. Following their initial publication, cage-based
deformations have become widely used especially in character animation, and
several variants such as the harmonic coordinates of Joshi et al. (2007), Green
coordinates (Lipman et al. 2008), or the recent work of Zhang et al. (2014) intro-
ducing local barycentric coordinates have been proposed. These methods also
found their way into professional modeling software packages, as exemplified by
the integration of harmonic coordinates into Blender (2015). For a comprehensive
treatment and analysis of these methods, we refer to the recent survey of Nieto
and Susin (2013). For our investigation of cage-based deformations, we follow the
original approach of Ju et al. (2005). We illustrate cage-based deformation of the
Fandisk model in figure 3.4.

The actual process for performing cage-based deformation of a model is very
similar to the FFD process. First, the model M is embedded in a control cage XK.
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3.4 Cage-based Deformation

Figure 3.4: Cage-based deformation of the Fandisk model. Left: Initial setup. Right: The
top vertices (golden) of the bounding cage are moved and the mesh vertices are updated
accordingly using mean value coordinates. For illustrative purposes, we employ a very
simple cage based on the object bounding box.

Then each point x € M can be represented by a weighted linear combination of
the cage vertices ¢; € R

n
x =) o),
j=1

where the ¢;(x) are generalized barycentric coordinates. When we move the cage
vertices to updated positions ¢; we can define the according space deformation
function as

n
dcages(x) = Z(S](p](x),
1

where §; = ¢/ — ¢; are the cage vertex displacements. The actual computation of
mean value coordinates is purely based on simple geometric constructions, and
Ju et al. (2005) describe the algorithm in detail, including complete pseudo-code.
Therefore, we do not reproduce a description here.

Similar to FFD, the manipulation of cage vertices becomes tedious for high
resolution cages and/or complex models. Therefore, we employ a handle-based
direct manipulation interface identical to section 3.3, see figure 3.5 for an illustration.
Since both the mathematical derivations to compute the cage vertex displacements
as well as the actual implementation using SVD are essentially identical to the

ones for direct manipulation FFD, we omit a detailed presentation at this point.
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Figure 3.5: Cage-based deformation of the Fandisk model using a handle-based direct
manipulation interface. Left: Initial setup. Right: Deformed model.

3.4.1 Cage Generation

In contrast to classical FFD where the control grid is typically a regular subdi-
vision of the object bounding box, the construction of a coarse bounding cage
is a non-trivial task of its own. In the original publications the cage is typically
created manually, which becomes tedious and time-consuming for complex ge-
ometries. In this section, we briefly derive general criteria for an automatic cage
generation procedure as well as requirements for the resulting bounding cage. We
then describe different cage generation methods of increasing output quality but
also implementation complexity.

Even though it is not yet fully understood what properties a good cage should
exhibit, it is still possible to formulate a set of general criteria. First of all, the cage
should fully enclose the object and match its topology as good as possible. The
complexity of the cage, i.e., the number of cage vertices should be smaller than
the number of object vertices, while being controllable by the user. Given a target
number of cage vertices, the shape of the triangles in the cage should be as good
as possible, i.e., close to equilateral triangles. This is desirable since the shape of
the triangles also influences the shape of the deformation (see also section 4.4).
Depending on the particular deformation scenario, symmetry of the cage can be
an important characteristic as well, e.g., in case the target model consists of highly
symmetric components.

A rather straightforward and simple way to generate a bounding cage is to
compute the bounding box of the model, slightly increase the size of the box to
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3.4 Cage-based Deformation

Figure 3.6: Cage generation based on convex hull computation (left), offsetting (center),
and feature-preserving remeshing (right).

make sure the model is fully contained, and to create a minimal triangulation. See
figures 3.4 and 3.5 where we use such a cage for the sake of simplicity. In case we
require a higher resolution cage, we can simply employ a remeshing (Botsch and
Kobbelt 2004a) or subdivision (Loop 1987) algorithm. However, a cage generated
this way will always be only a crude approximation of the original shape. An
alternative approach is to use the convex hull (de Berg et al. 2008) of the object as
an initial cage, see figure 3.6. While this approach improves the matching between
cage and object, it is still problematic in case of large concave regions in the model.
Even though we could achieve a more tight matching between the cage and the
model by employing non-rigid registration techniques (Bouaziz et al. 2014), a cage
generated through convex hull computation is topologically equivalent to a sphere
and therefore not capable of reproducing the topology of more complex target
models.

In the following, we introduce a cage generation procedure based on offset
surface computation and surface reconstruction that overcomes the limitations of
the previous simplistic approaches and that is able to compute tightly matching
bounding cages—both in terms of geometry and topology—in a semi-automatic
manner. The individual steps of the procedure are:

1. Sampling: Since for low resolution models the sampling density might be
insufficient for faithful surface reconstruction, we optionally perform Loop
subdivision (Loop 1987) to increase sampling density.

31



Chapter 3 Shape Deformation Methods

2. Offsetting: In order to obtain a cage enclosing the original mesh we offset
each vertex towards its normal direction. Depending on the exact shape of
the model and the size of the offset this step might cause self-intersections.

3. Reconstruction: In order to get rid of the self-intersections, we reconstruct
the surface from its points and normals by using Poisson surface reconstruc-
tion (Kazhdan et al. 2006).

4. Remeshing: In case a high quality cage is desired, the resulting cage is
remeshed using either isotropic or adaptive remeshing based on edge splits,
collapses, and flips (Botsch and Kobbelt 2004a).

5. Decimation: In case a coarse cage is desired, we decimate the cage using
halfedge-collapses and error quadrics (Garland and Heckbert 1997).

The individual processing stages of our cage generation process are illustrated in
figure 3.7. Note that the sampling, remeshing, and decimation steps are optional.
Their usage depends on the particular input model and the user requirements to be
satisfied by the cage. While this method is sufficiently flexible to generate bounding
cages for a wide variety of input geometries, the design and implementation of an
efficient, robust and fully automatic cage generation method is a challenging task
for future work. The volumetric cage generation approaches described by Xian
et al. (2009, 2012) or the robust offset surface computation method of Pavi¢ and
Kobbelt (2008) constitute promising starting points towards this goal. The recent
work of Sacht et al. (2015) introduces a powerful cage generation method, although
the technique has convergence issues in some cases. Still, the need generate and
maintain a coarse bounding cage remains a serious obstacle in adopting cage-based
deformations for design optimization. In the next section, we introduce a more
flexible technique that does not suffer from this burden.

3.5 RBF DEFORMATION

In this section, we present a shape deformation method based on scattered data
interpolation techniques that improves upon the previously presented approaches
in two significant aspects: First of all, the method is point-based in nature, i.e.,
the technique allows to freely position the desired degrees of freedom at arbitrary
locations in space, thereby freeing the user of the need to generate and maintain a
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Figure 3.7: Processing stages during cage generation. Top row: Low resolution mesh and

subdivision. Middle row: Offset mesh and surface reconstruction. Bottom row: Adaptive
remeshing and decimation.
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MI

Figure 3.8: Deformation of the Fandisk model using a handle-based direct manipulation
interface for RBFs.

potentially complex control structure such as a control grid or a bounding cage
enclosing the target shape. Second, by exploiting the aforementioned flexibility
and by choosing an appropriate interpolation method, we construct the space
deformation function in such a way that it smoothly interpolates displacements
through space, exactly satisfies the user-specified modeling constraints, and di-
rectly minimizes a physically-inspired deformation energy—thereby resulting in a
smooth, highly precise as well as physically plausible deformation.

Shape deformations based on scattered data approximation and interpolation
have been proposed by different authors and within a variety of application contexts
such as computer graphics, physics simulation, as well as design optimization. In
particular, methods based on radial basis functions (RBFs) have gained increasing
attention (Ruprecht et al. 1995; Botsch and Kobbelt 2005; Boer et al. 2007; Jakobsson
and Amoignon 2007; Michler 2011), and we concentrate our investigation on this
particular method. We illustrate an example deformation based on radial basis
functions employing a handle-based direct manipulation interface in figure 3.8.

On an abstract level, we can treat space deformation as a scattered data interpo-
lation problem: We search for a function d: R*> — R? that (i) exactly interpolates
the prescribed displacements d(h;) = h] — h; = b; and (ii) smoothly interpolates
these displacements through space. Radial basis functions are well known to be
suitable for solving this type of problem (Wendland 2010). Using RBFs, we define
the deformation function as a linear combination of radially symmetric kernel

34



3.5 RBF Deformation

functions goj(x) = ¢(|lx - cjll), located at centers ¢ € R? and weighted by w; € R3,
plus a linear polynomial to guarantee linear precision:

m 4
dii(x) = ) wip(x) + ) qum(x), (3.8)
j=1 i=1

where {r;,,, 735,714} = {x, ¥, 2, 1} is a basis of the space of linear trivariate poly-
nomials, weighted by coefficients g, € R®. Note that the polynomial term is
important, since it guarantees to find the optimal affine motion (translation, rota-
tion, scaling) contained in the prescribed displacements b;.

The choice of the kernel function ¢: R — R basically determines the shape
of the interpolant. Commonly used kernels include Gaussians, (inverse) multi-
quadrics, and polyharmonic splines (see table 3.1 for an overview). In our appli-
cation, we aim for high quality deformations minimizing the distortion of mesh
elements. To meet this goal, we have to use a sufficiently smooth kernel function.
While Gaussian and multiquadric basis functions provide infinite smoothness, i.e.,
they are C*, they require the choice of an additional shape parameter (the € in
table 3.1). Small values of € increase the approximation accuracy, but lead to numer-
ically instabilities, and vice versa. Therefore, finding the optimal shape parameter
for a given radial basis function and the particular application is a non-trivial task
on its own, see Fasshauer (2007) for an overview of different strategies.

In contrast, polyharmonic splines are free of shape parameters, but only provide
finite smoothness. Therefore, depending on the application scenario, we have to
choose a sufficiently high degree of smoothness. In R* the polyharmonic spline

Table 3.1: Commonly used RBFs. For Gaussians and (inverse) multiquadrics € denotes the
shape parameter. For polyharmonic splines k denotes the order of smoothness.

Basis function Definition
Gaussian o(r) = e’
Multiquadric o(r) = V1 + (er)?
Inverse multiquadric o(r) = 1/1 + (er)?

p2k=d, d odd,

Polyharmonic spline in R? r) =
Y P #(r) {er_d log(r), d even.
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Figure 3.9: Comparison between a biharmonic (left) and a triharmonic (right) RBF defor-
mation of a plane.

¢ (r) = r*73 is a fundamental solution of the k-th order Laplace equation, such
that also the RBF deformation of equation (3.8) is k-harmonic, i.e., Afd = 0. Being
the strong form of a variational energy minimization, this is equivalent (Wendland
2010) to d minimizing the weak form
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In order to preserve mesh quality during deformation, we should construct a
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deformation function that at least minimizes the change of first-order derivatives
of the mesh elements (Staten et al. 2011), and therefore the first-order derivatives
of the deformation function. With k = 1 in equation (3.9), this is achieved by the
harmonic RBF ¢(r) = 1/r, but these basis functions are singular at their centers.
The biharmonic spline ¢(r) = r is well defined, but not sufficiently smooth at
the center and therefore not suitable for our application, see figure 3.9 for an
illustration. By choosing ¢(r) = r°, we obtain a deformation function that is
triharmonic, therefore penalizes third-order derivatives in equation (3.9), and is
globally C? smooth. With these properties, it is the lowest-order polyharmonic
RBF suitable for our application. Since for the sake of numerical robustness a low
order is preferable, we chose triharmonic RBFs for our deformation method.
Now that we have chosen an appropriate basis function type, the next question
is where to place the RBF kernels. Since in our application it is desirable to exactly
satisfy the interpolation constraints d(h;) = b;, we simply place the RBF kernels
at the constraint positions (i.e., ¢; = h;). Computing the deformation function
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3.5 RBF Deformation

Figure 3.10: Reducing the number of RBF constraints: Left: Full constraint set for fixed and
handle vertices using 3537 constraints. Right: Reduced constraint set using 779 constraints
only.

then amounts to finding the coeflicients w; and gy, which we do by solving the
(m + 4) x (m + 4) linear system

®-W = B, (3.10)
where
[ @1(hy) - @(hy) mi(hy) - my(hy)]
D = (Pl(hm) (Pm(hm) ﬂl(hm) 7T4(hm)
n(hy) - m(h,) 0 0 >
| (k) - muhy,) 0 0 |
T
W = [wl,...,wm,ql,...,q4] ,
and

B = [by,....b,,0,...,0] .

After solving equation (3.10) we can compute the deformed model M’ by simply
evaluating the RBF deformation function at each point x of the model.

We solve the linear system in equation (3.10) using the LDLT decomposition
of LAPACK (E. Anderson et al. 1999) and use the same handle-based direct ma-
nipulation interface as described in figure 2.1. Handle and fixed vertices enter
the equation system as constraints with given displacements (either the handle
displacements directly or zero displacements for fixed vertices). If the number
of handle and fixed vertices is large, equation (3.10) becomes time-consuming to
solve. In case of deforming a triangle mesh, however, it is rather straightforward to
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Chapter 3 Shape Deformation Methods

reduce the number of constraints. Following the argument of Botsch and Kobbelt
(2005) that a band of three points thickness is sufficient to provide C? boundary
constraints, we only include fixed and handle vertices in the 3-ring of a deformable
vertex, see figure 3.10.

3.6 SUMMARY

In this chapter, we introduced a variety of state-of-the-art shape deformation tech-
niques for their use in design optimization. Due to their wide-spread use in both
academic as well as industrial contexts, we started our investigation with classical
free-form deformation as well as its direct manipulation variant. We introduced
cage-based deformations as a generalization of FFD to more flexible surface-based
control structures and extensively discussed the problem of generating a coarse
bounding cage. Finally, we introduced RBF deformations as a technique allowing
for an even simpler and more flexible control structure—a set of points in space—
while offering a high degree of precision and deformation quality. While we already
highlighted selected important aspects of the individual methods in this chapter,
we continue with a more thorough investigation in the next chapter—benchmarks.
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CHAPTER 4

BENCHMARKS

In this chapter, we investigate the individual strengths and weaknesses of the differ-
ent deformation methods introduced in the previous chapter 3 based on a set of
representative yet synthetic benchmarks. The overall goal of these benchmarks is
to capture the basic properties and capabilities relevant for the method’s use in
design optimization scenarios. We perform our evaluation based on the follow-
ing criteria: computational performance, robustness (both numerical as well as
regarding defects in the input data), adaptivity and precision, as well as quality of
the deformation. For each of our evaluation criteria we first describe our tests and
methodology and then present the results for each of the deformation methods.

41 INTRODUCTION

Providing meaningful benchmarks for a set of different deformation methods
comes with a number of challenges. In some cases a direct comparison between
all methods and variants is only of limited significance due to the differences
in modeling capabilities. In particular, comparisons with the classical in-direct
FFD and Cage deformation methods are problematic, since in these cases it is
impossible to perform exactly the same deformation on a representative basis, e.g.,
satisfying the same user-defined deformation constraints with a given number of
degrees of freedom. In such cases, we concentrate on the corresponding direct
manipulation variants of FFD and Cages and provide only qualitative results for
the classical formulations.

We performed all tests on a Dell T7500 workstation with an Intel Xeon E5645
2.4 GHz CPU and 18GB RAM running Ubuntu Linux 12.04 x86_64. We compiled
all code with gcc 4.6.3, optimization turned on (using -03) and debugging checks
disabled (-DNDEBUG). In order to rule out processor and memory caching as well
as power saving issues, we averaged performance timings over five deformation
steps. Unless noted otherwise, we used the same setup for all benchmark results
presented in this thesis.
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4.2 PERFORMANCE

While the impact of the performance of a deformation method is often negligible
when used within a design optimization loop, it is still an important and fundamen-
tal characteristic. Furthermore, it is crucial for interactive modeling, e.g., during
initial setup of the method as well as for pre-optimization experimentation. In
the following, we first discuss the theoretical performance of each method before
providing an actual comparison.

Within control point-based FFD, the only performance-critical component is
the computation of the local coordinates of each object point with respect to the
control lattice. When using B-spline basis functions, this computation requires
the use of a numerical technique such as a golden section search or a Newton
method (Press et al. 2007). However, since the local coordinate computation is
independent for each object point, this part is trivial to parallelize.

Naturally, direct manipulation FFD also requires the local coordinate computa-
tion discussed above. In addition, however, the linear system of equation (3.5) has
to be solved. The standard approach for this is based on computing the pseudo-
inverse using singular value decomposition, which has a computational cost of
am*n +22n° floating point operations (Golub and Van Loan 2013), where m and n
are the number of constraints and control points, respectively. Additional compu-
tational costs come from the matrix multiplications required to actually compute
the pseudo-inverse ®@* = VE*UT from the SVD.

For cage-based deformations the most expensive part is the computation of
mean value coordinates. However, since these rely on simple geometric construc-
tions only they do not require the use of an expensive numerical technique. Still,
due to the global support of the basis functions we have to loop over all cage
vertices for evaluating basis functions (unlike FFD where we can use locally sup-
ported B-spline basis functions). Within the direct manipulation formulation of
cage-based deformations the same performance limitations as in case of DM-FFD
apply.

Within the RBF deformation technique the most expensive part is the solution
of the linear system of equation (3.10), which is dense due to the global support of
the chosen radial basis functions ¢(r) = r>. The resulting asymptotic complexity is
O(m?) when using standard solvers for dense linear systems. Since the linear system
in equation (3.10) is symmetric but not positive definite, efficient Cholesky-type
solvers are not applicable. However, we can still solve the system efficiently by
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4.2 Performance

using a LDLT factorization, which has computational costs of %m3 floating point
operations, and also only requires half the storage space due to symmetry. For a
comprehensive investigation of advanced linear solvers for RBF deformation we
refer to section 7.5.

In case of Shells the performance is dominated by the solution of the linear
system of equation (3.4). Since the Laplacian matrices L* in equation (3.4) are
highly sparse we can use efficient direct sparse linear solvers (Botsch et al. 2005),
and the resulting asymptotic complexity is approximately O(m).

However, benchmarking the performance by simply measuring the time it takes
to deform a given mesh is not really meaningful since the methods pre-compute
different amounts of information. Comparing the performance of control point-
based FFD to directly manipulated DM-FFD or RBFs is not feasible, since there
is no way to perform the same deformation with all three methods. In order to
facilitate a representative and objective comparison between the methods, we
present an alternative formulation of all deformation methods which allows us to
fully pre-compute the deformation. The deformation methods we investigate are
linear, i.e., they require solving a linear problem in one form or another. Therefore,
the deformations can be pre-computed by solving a sequence of linear systems,
see, e.g., Botsch and Kobbelt (2005). Even more, the methods can be handled in a
uniform manner by expressing the deformation in terms of handle basis functions.

Let m be the number of displacement constraints b; which are given as pre-
scribed values of the deformation function d(h;) = b;. In case of DM-FFD, the
control point displacements §; satisfying these constraints are found by solving
the linear system of equation (3.5). In case of RBFs, we find the weights w; for
the deformation function d ;¢ by solving equation (3.10). What we are searching
for are the displacements x/ — x; = a; for each deformable vertex x;. Written in
matrix form this becomes A = [a, ..., ak]T, where k is the number of deformable
vertices. In case of DM-FFD, A can be computed using

A =0-D, ®ij = (Pj(u(xi)) > (4.1)

where of (u(x;)) is the trivariate tensor-product B-spline basis function of control
point ¢; evaluated at point x;, and D is the matrix of control point displacements
8]-. By substituting D using equation (3.7) we can rewrite equation (4.1) as

A =0 -0t-B,

[—

b 4
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6.2 I 0 FFD (serial)
FED (parallel)

I 1§ DM-FFD (serial)
DM-FFD (parallel)
Cages (serial)

2.7 Cages (parallel)

DM-Cages (serial)
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Figure 4.1: Performance comparison of the deformation methods on a simple sphere mesh
with 7800 vertices and 526 handle and 404 fixed vertices. Times in seconds. For FFD
methods a control grid of resolution 8* was used. For Cage deformations a cage with 512
vertices was used. For RBFs 427 centers were used.

where B is the m x 3 matrix of prescribed handle displacements. Using the k x m
matrix ¥ we can then directly evaluate the vertex displacements in terms of handle
displacements. In case of direct manipulation cage deformation the formulation
follows exactly the FFD procedure, but with using mean value coordinates instead
of B-spline basis functions.
The corresponding formulation for RBF deformations is similar: The matrix A
can be computed by
A=0-W, 0;= (p]-(xi), (4.2)

where W is the matrix of radial basis function weights. Based on equation (3.10)
the weight matrix W can be computed by inverting @, i.e., as W = @ ! B. This
yields
A =0 -0!.B
'

Then ¥ is the desired k x m basis function matrix that can be used to compute the
vertex displacements from the given handle displacements.

The precomputation in terms of handle basis functions for thin shell deforma-
tions is described in detail by Botsch and Kobbelt (2004b). We therefore do not
repeat it here.

Based on this formulation, we compare the performance of the methods by
pre-computing a deformation with 427 constraints. In figure 4.1 we present the
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o/o\o o/g

Figure 4.2: Examples of common surface mesh degeneracies. Top row: Low quality triangles.
Bottom row: Non-manifold connectivity. Bottom row image reproduced with permission
from Botsch (2008).

results comparing FFD, Cages, Shells, and RBFs. In case of FFD and Cages, we
include both parallel and serial implementations of their respective control point
and direct manipulation variants. We use OpenMP (Dagum and Menon 1998)
for parallelization. As to be expected from theory, DM-FFD and DM-Cages offer
the worst performance. While parallel coordinate computation clearly improves
(DM-)FFD and (DM-)Cages performance, RBFs and Shells require roughly the
same amount of time to solve the full problem. Furthermore, we note that for Cages
the numbers do not include the time required for cage generation. Depending
on the different processing options outlined in section 3.4.1 the cage generation
process based on offsetting and surface reconstruction takes ~15s in this scenario
and would therefore be the dominating factor for cage-based deformations.

4.3 ROBUSTNESS

The robustness of a deformation method describes its robustness towards defects
in the input data as well as general numerical stability. Common defects in the
input mesh include low-quality triangles with very large or very small angles, such
as caps or needle elements, non-manifold configurations, or self-intersections. We
illustrate selected examples in figure 4.2.

Due to their space-based nature, FFD, Cages, and RBFs are highly robust with
respect to defects in the input data. However, in the direct manipulation variants
of FFD and Cages the singular value decomposition used to compute the pseudo-
inverse can be a source for numerical instabilities. In order to prevent division
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(d) 10712

(e) setup (f) 1074 (g) 1076 (h) 10712

Figure 4.3: Artifacts in the deformation of the Fandisk model depending on the clamping
value used for small singular values. DM-FFD with a 5 x 5 x 5 control lattice. Original
setup in (a) and (e), different clamping values as fractions of the largest singular value
O max: 107* (b) and (f), 107° (c) and (g), and 107'* (d) and (h).

by zero, artifacts in the deformation, as well as extreme distortions of the control
lattice, it is necessary to clamp small singular values o; in equation (3.6). The clamp-

ing value is typically determined as a fraction of the largest singular value o, ., see

max?>
Press et al. (2007) for details. In figure 4.3, we illustrate examples of unwanted arti-
facts in the deformation depending on different clamping values: Choosing a too
high value damps the deformation in an undesirable manner (10~* in figure 4.3),
while a too low value (107'? in figure 4.3) leads to severe artifacts in the deformed
model as well as the control grid. Since a suitable clamping value for a given defor-
mation setup is not known a-priori, it has to be determined heuristically—thereby
constituting a source of increased effort and potential failure.

Non-manifold configurations are problematic in general, since in this case it is
no longer possible to reliably traverse the local neighborhood of a vertex within
a surface. While this does not pose a direct problem for the space deformation
methods we investigate, it can prevent the use of a more efficient reduced set of
handle constraints in a direct manipulation interface, such as described for RBFs
in section 3.5. For purely surface-based methods such as the thin shell deformation
of section 3.1 such severe defects render the technique practically inapplicable.
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4.4 QUALITY

The quality of a deformation includes several aspects. On the most general level, the
deformation should be free of any unexpected oscillations or artifacts. Following
the principle of simplest shape (Sapidis 1994), the deformation should be smooth,
fair, and physically plausible. Furthermore, we want the deformation to maintain
mesh element quality as good as possible in order to allow for as large as possible
deformations while maintaining meshes suitable for downstream simulation. We
note, however, that the methods we consider do not incorporate explicit mesh
optimization steps that are possibly required for particularly large deformations.

As a first benchmark we investigate the smoothness of the deformation tech-
niques by analyzing the curvature of a surface mesh after deformation. More
specifically, we consider mean curvature defined as

oo KLtk ,
2

where x; and «, are the principal (maximum and minimum) curvatures of the
surface. Using the cotangent weight discretization of the Laplace-Beltrami oper-
ator (Meyer et al. 2003) we compute the discrete absolute mean curvature for a
given vertex v; € J with coordinates x; as

H(Ui) = |Axi||,

1
5!
where A is the discrete Laplace-Beltrami operator. For more details on discrete
curvature computation we refer to chapter 3 of Botsch et al. (2010).

We present a color-coded mean curvature visualization after performing a
pre-defined deformation with DM-FFD, DM-Cages, RBFs and Shells in figure 4.4.
The visualizations demonstrate that the DM-FFD and DM-Cages techniques suffer
from aliasing artifacts due to their lattice-based nature. Note that the same artifacts
occur in control point based FFD and Cage deformations. In contrast, both RBFs
and Shells result in highly smooth deformations due to their built-in minimization
of physically-inspired energies as described in sections 3.1 and 3.5. Note that for
illustration purposes we deliberately chose a deformation setup that is not aligned
with FFD grid axes. In other cases the aliasing artifacts might be less severe.

Both FFD and Cages result in deformations that are not necessarily physically
plausible. Especially their direct manipulation variants do not optimize for a high
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Figure 4.4: Mesh smoothness after deformation. Top row: Deformed meshes. Bottom row:
Mean curvature plots. From left to right: Setup, DM-FFD (729 control points), DM-Cages
(790 cage vertices), RBFs (792 kernels), and Shells.

Figure 4.5: Dependency of the deformation on the control lattice resolution. For all exam-
ples the same handle region was moved by the same translation.

Figure 4.6: Continuity problems in FFD in case of partial control grids. From left to right:
Original setup, non-smooth transition, smooth transition after refinement.
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quality deformation, but for minimization of control point or cage vertex move-
ment. In general, when using a lattice-based method the shape of the deformation
strongly depends on the resolution and form of the control lattice, as shown for FFD
in figure 4.5. Therefore, it becomes highly difficult to predict the shape resulting
from a particular deformation setup in advance.

Another problem with lattice-based methods is the continuity in case of partial
control grids. If the control grid covers only a subset of the object, non-smooth
transitions between object points inside the control volume and those outside may
occur (see figure 4.6, center). In such cases additional sheets of control points have
to be inserted into the grid in order to ensure a smooth transition (figure 4.6, right).
This not only complicates the setup process of FFD, it also introduces unnecessary
degrees of freedom due to bad adaptivity (see also the next section 4.5). While
control cages are more flexible to refine locally, the global nature of mean value
coordinates makes partial control cages not feasible at all. In contrast, in case
of RBFs a C? smooth transition between deformable and fixed/handle regions
is easily achieved by using three rings of vertices in the local neighborhood of
deformable vertices, see Botsch and Kobbelt (2005) and section 3.5 for details.

4.5 ADAPTIVITY

In general, the adaptivity of a deformation method describes how well the method
is capable of approximating a certain shape with an as low as possible number
of degrees of freedom (DoFs). In the context of shape optimization the ability to
dynamically add additional DoFs in regions of high interest or sensitivity towards
physical performance is particularly important.

In order to evaluate adaptivity, we use a benchmark that matches a source shape
to a given target shape. In this test, we use all vertices of the mesh as prescribed
constraints, and the deformation method has to match the shape as closely as pos-
sible. For each of the methods we start with a low number of DoFs and successively
refine the method to include more and more DoFs. We stop refinement once the
number of DoFs is equal to the number of constraints.

Adaptivity can be measured best when approximating a target shape that is
identical to the source shape for a large part of vertices while having sharp local
features in another region, i.e., some parts require almost no DoFs to satisfy the
constraints while others do require a large number. Therefore, we use a target
shape based on a simple plane with vertices displaced in the upper right area of the
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mesh, see figure 4.7 (top left) for an illustration. Note that this shape is particularly
demanding since the transition from the plane to the feature area is non-smooth
and highly steep.

In case of DM-FFD, we perform adaptive refinement by inserting additional
control point planes in x— and y—directions in those cells containing the vertex
with the largest error. We do not perform refinement in z-direction, since in our
example this would only result in wasted degrees of freedom. As becomes clear
from figure 4.7, the adaptivity of DM-FFD is generally poor, since it depends on
the resolution of the lattice being used. While increasing the resolution of the
lattice leads to sufficient degrees of freedom to approximate fine details as well,
at the same time the insertion process also alters the deformation itself, which
is particularly undesirable if using refinement during an optimization process.
We note, however, that we could overcome this limitation by using knot insertion
instead of control point refinement.

Since the control cage of DM-Cages is a triangle mesh, we can adaptively refine
the cage by using remeshing algorithms. Adaptive remeshing alters the mesh
in such a way so that important regions contain smaller triangles and therefore
more DoFs, while less important regions contain larger triangles. A challenge for
adaptive remeshing is the construction of a suitable sizing function that describes
how fine the mesh resolution should be in a certain area of the mesh. Typically,
the sizing information is derived from geometric properties of the mesh, such
as its curvature. In our application, however, we need to employ a sizing field in
accordance to the regions of highest approximation errors, which changes during
the refinement process. Therefore, we use a simple mapping from approximation
errors to target edge lengths as sizing function. Similar to DM-FFD, the results
in figure 4.7 demonstrate that the adaptivity of DM-Cages is generally poor, which
is due to the global nature of mean value coordinates as well as a lack in precision
(see also section 4.6).

In case of RBFs we use straightforward adaptive greedy refinement (Schaback
and Wendland 2000). Initially, we uniformly sample the plane with a given number
of kernels. We then successively add additional kernels at the vertices of the mesh
having the largest errors. The results in figure 4.7 clearly confirm that RBFs provide
superior approximation accuracy compared to both DM-FFD and DM-Cages.
Note that RBFs preserve the sharp features so well because we place kernels directly
on the mesh vertices and thereby exactly interpolate the prescribed displacements.
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Figure 4.7: Adaptive refinement benchmark results. (a) Example results. Top row: target
shape (left) and DM-FFD (900 DoFs, right). Bottom row: DM-Cages (1094 DoFs, left)
and RBFs (993 DoFs, right). (b) Approximation error vs. degrees of freedom.

49



Chapter 4 Benchmarks

Since in the surface-based shell deformation the DoFs are the vertex positions of
the mesh, performing adaptive refinement for this method is not directly possible,
at least not without changing the object representation through remeshing or
through modifying the thin shell formulation similar to the least squares meshes
approach of Sorkine and Cohn-Or (2004).

4.6 PRECISION

The precision of a deformation method describes its accuracy in satisfying the
positional constraints as prescribed by the user or optimization method. In general,
we can distinguish at least three different levels of accuracy: The constraints are
typically satisfied either exactly, in a least-squares sense, or only in a qualitative
manner.

Manipulating control points of a lattice as in case of FFD or Cages can only pro-
vide qualitative precision since there is no way to automatically satisfy prescribed
constraints. Directly manipulated FFD and Cages improve on this by providing
precision in a least-squares sense through the solution of equation (3.5). Finally,
by solving equation (3.10), RBFs allow for exact satisfaction of constraints, thereby
offering the highest level of precision. The quantitative results of section 4.5 under-
line these differences in precision. Finally, Shell-based deformation also allows for
the exact satisfaction of user constraints due to its surface-based nature.

4.7 SUMMARY AND CONCLUSION

The results of the individual benchmarks show that there are significant differ-
ences between the deformation methods. A compact and simplified summary
of the results is presented in table 4.1. For each of the benchmarks and methods
we assign either a positive (+), neutral (¢), or a negative (—) assessment. Both
FFD and Cages obtain mixed results. While their direct manipulation variants
provide improvements in terms of precision, both computational costs increase
and robustness issues might occur. Both FFD- and Cage-based techniques ex-
pose significant weaknesses with regards to adaptive refinement and quality of
the deformation. In contrast, RBFs score the largest number of positive and only
one neutral assessment. The thin shell deformation method yields positive results
in general. However, due to its surface-based nature its applicability to design
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optimization is limited: There are no means for adaptive refinement and it is not
possible to deform a volumetric simulation mesh along with a surface.

However, the choice of a deformation method heavily depends on the needs of
a given design optimization scenario. If the scenario neither demands for precise
constraint satisfaction nor for adaptive refinement but only aims for general explo-
ration of the design space, FFD offers a simple and robust deformation technique.
In many cases, however, exact control is highly important in order to obtain valid
designs that meet production limitations such as keeping critical components fixed
or deforming them only rigidly. In such cases, we clearly recommend RBFs over
both FFD and Cages including their respective direct manipulation variants.

In some optimization scenarios the locality of the deformation might also be
an important aspect. Both FFD methods allow for local deformations, depending
on control grid resolution and setup as well as basis function degree. In contrast,
our RBF deformations are global due to our choice of triharmonic basis func-
tions. While there exist compactly supported RBFs (Wendland 2010), these basis
functions lack the built-in energy minimization of equation (3.9), see also chap-
ter 8. However, in many cases a proper setup of fixed and handle regions in the
direct manipulation interface eventually provides a sufficient degree of locality.
The recently proposed local barycentric coordinates (Zhang et al. 2014) provide
an interesting alternative enabling localized cage-based deformations.

Naturally, all of three methods can be enhanced in several ways. In case of both
FFD methods the use of more flexible basis functions such as T-splines (Sederberg
et al. 2003) or truncated hierarchical B-splines (Giannelli et al. 2012) would drasti-
cally improve the adaptivity of the respective methods. As for RBFs, constraining

Table 4.1: Summary of evaluation results. For each benchmark test and deformation method
we assign a negative (), neutral («), or a positive (+) assessment.

Performance Robustness Quality Adaptivity Precision

FFD . .

DM-FFD . . .
Cages . . .

DM-Cages . . .
RBF .

Shells .
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the deformation function to be positive—similar to the bounded biharmonic
weights introduced in (Jacobson et al. 2011)—offers an interesting possibility for
future enhancement.

Taking into account the different results of our benchmarks as well as the in-
dividual capabilities of the deformation methods, we will from now on narrow
down our selection of techniques. Cages—at least in their incarnation of mean
value coordinates—do not offer a significant improvement over FFD, except in
terms of flexibility and ease of implementation. Furthermore, the cage generation
problem forms a serious obstacle to its seamless adoption within fully automatic
design optimization. Similarly, it becomes clear that the thin shell deformation
method—while providing a high and desirable level of modeling flexibility—is
too limited for design optimization in general due to its surface-based nature.
Therefore, we focus on FFD and RBF deformation methods from now on and
further analyze these methods in our application-oriented design optimization
benchmark.
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CHAPTER 5

EVOLUTIONARY DESIGN OPTIMIZATION

In this chapter, we investigate the use of shape deformation techniques within
design optimization scenarios in more detail. To this end, we first introduce basic
concepts of evolutionary algorithms and outline their utilization in evolutionary
design optimization. Finally, we present an application-oriented benchmark com-
paring classical free-form deformation, its direct manipulation variant, as well
as deformations based on radial basis functions in a passenger car design opti-
mization task. Our results indicate that shape deformation techniques directly
manipulating the design prototype lead to faster convergence of the optimization
process. In addition, we conclude that the flexibility of kernel-based deforma-
tion methods such as RBFs leads to reduced time and effort in the setup of the
optimization scenario.

51 OVERVIEW

Evolutionary algorithms employ principles of biological evolution such as repro-
duction and mutation for solving global optimization problems in a stochastic
manner (Back 1996). Widely used techniques include genetic algorithms, genetic
programming, evolutionary programming, and evolution strategies, see the works
of Back and Schwefel (1993), Fonseca and Fleming (1995), and Coello (1999) as
well as the recent textbook of Simon (2013) for a comprehensive overview and
introduction. The basic idea behind these techniques is to represent candidate
solutions through a set of parameters and to measure the quality of a solution by
means of a fitness or cost function. The optimization then successively improves
the fitness of an initial starting solution by adapting its parameters. On a general
level evolutionary algorithms have compelling advantages such as the potential
ability to find global optima, the capability to generate novel and unexpected
designs, robustness to noise and uncertainty, as well as the ability to deal with
non-smooth, discontinuous, and multi-objective fitness functions.
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Figure 5.1: A generic evolutionary design optimization process

An overview about a generic evolutionary design optimization process is il-
lustrated in figure 5.1. The initial design is encoded into a parent chromosome.
Then a set of offspring chromosomes is created by means of reproduction and
mutation, i.e., by combining selected parent chromosomes and applying changes to
the new chromosomes. By mapping the offspring’s genotype—its genetic code—to
its phenotype—the detectable expression of its genotype—a set of design variations
is created. The new designs are then evaluated with regards to a specific fitness
function. The most successful offspring are selected to be the parents of the next
generation and the evolution cycle starts anew. This process is repeated until a
desired fitness value is reached, the optimization converges, or a maximum num-
ber of generations is reached. After a final selection step we obtain the optimized
design.

Among the vast variety of evolutionary algorithms there are four prominent
classes of techniques (Simon 2013): Genetic algorithms, genetic programming, evo-
lutionary programming, and evolution strategies. On a basic level, these approaches
differ in how they represent and adapt candidate solutions, thereby affecting what
recombination and mutation mechanisms available, how they are actually imple-
mented, and how suitable a given approach is for a given optimization problem.
Genetic algorithms traditionally encode the solutions as string of binary num-
bers. Genetic programming approaches represent solutions as programs—often
based on a tree structure—that are then modified during optimization. Similarly,
evolutionary programming techniques employ programs as representation but
only allow to change the parameters of the program during optimization. Finally,
evolution strategies represent the solutions as vectors of real numbers, and we
focus on this class of algorithms from this point on.
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52 EVOLUTION STRATEGIES

Evolution strategies (ES) are a prominent class of evolutionary algorithms for
solving a wide variety of optimization problems (Rechenberg 1973, 1994). Potential
solutions are typically represented using vectors of real numbers. After copying
the parent chromosome for reproduction the offspring chromosomes are mutated
by adding a normally distributed random vector with zero mean. In compari-
son to other evolutionary algorithms ES have two significant advantages: First,
the strategy parameters can be adapted during optimization, thereby leading to
faster convergence. Second, due to its simple vector-based encoding, incorporating
constraints on the parameters is much simpler than in other methods. A compre-
hensive introduction to evolution strategies and its variants is given by Beyer and
Schwefel (2002).

A state-of-the-art variant of ES that provides high convergence rates and is able
to deal with small population sizes is the covariance matrix adaptation evolution
strategy (CMA-ES), see Hansen and Ostermeier (2001) for a complete introduction.
This property is particularly important when using a computationally expensive
fitness functions based on large-scale CFD or FEM simulations. Within this variant
of ES the covariance matrix determines the shape of the random distribution
being used to create new candidate solutions. During the optimization process
the covariance matrix is then adapted towards previously successful candidate
solutions. We illustrate this adaptation process schematically in figure 5.2. A second
characteristic that enables CMA-ES to provide fast convergence rates on small
populations is the cumulative adaptation of the step size, i.e., an automatic control
of the amount of change applied during each iteration.
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Figure 5.3: An evolutionary design optimization loop for the aerodynamic performance
optimization of a passenger car.

5.3 PASSENGER CAR DESIGN OPTIMIZATION

In order to compare the individual strengths and weaknesses of the deformation
methods under consideration, we choose a practical design optimization scenario:
We apply the different methods in a passenger car design optimization scenario for
improving the aerodynamic performance of a simplified Honda Civic. We illustrate
the setup of our evolutionary design optimization loop in figure 5.3. We use the
CMA-ES implementation provided by the Shark machine learning library (Igel et al.
2008) and employ a (2, 15)-strategy, i.e., we consider two parents and 15 offspring
individuals. The selection is only performed on the offspring individuals. We
encode the design using n = 23 parameters corresponding to spatial displacements.
Furthermore, we constrain the feasible range of each parameter in order to prevent
the design from becoming too flat or stretched out, as it would happen in an
unconstrained optimization.

5.3.1 Deformation Setups

We set up the different deformation methods to deform the back part of the Civic
model, a region being particular important for the aerodynamic performance of
the car. In case of FFD, we pre-deform the generated control grid to roughly match
the shape of the car. We define several control point groups to be deformed accord-
ing to the same parameter, and we keep certain control points on the boundary of
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Figure 5.4: Initial setups of the different deformation methods: FFD, DM-FFD, RBFs.

the grid fixed in order to prevent discontinuities in the boundary region. In case of
DM-FED, we use the same control grid, however, instead of using individual con-
trol point groups all non-constrained control points are allowed to move in order
to satisty the prescribed object point displacements. We choose the object points
to be displaced to approximately reflect the FFD control point groups. Similar to
DM-FFD, we select a set of 20 handle regions for the RBF deformation method.
Note that at the time of conducting these experiments a completely equivalent
handle-based direct manipulation interface was not available for DM-FFD. We
illustrate the initial setups of the different deformation methods in figure 5.4. The
number of vertices being deformed is around 54k for all deformation methods.

5.3.2 Genotype-Phenotype Mapping

The genotype of an offspring chromosome is mapped to its phenotype by estab-
lishing a correspondence between each component of the chromosome and a
displacement into one spatial direction. Depending on the deformation method a
given control point group (FFD), group of object points (DM-FFD), or a handle
region (RBF) is displaced by the parameter. In case of RBFs, e.g., the first parameter
corresponds to the vertical displacement of the top roof handle region.

5.3.3 Fitness Function Evaluation

We evaluate the individual designs based on a fitness function fg,: R” — R, that
maps a given parameters vector g € R”" to a fitness value. We combine two different
performance values: fg,(g) = w;D(g) + w,V(g), where D(g) is the aerodynamic
drag as computed by the CFD simulation and V(g) is an additional volume term
to prevent the optimization from producing overly flat shapes. We compute the
aerodynamic drag D(g) by solving the incompressible laminar Navier-Stokes equa-
tions using the SIMPLE algorithm as provided by the OpenFOAM (2012) CFD
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Figure 5.5: Best designs using FFD (left), DM-FFD (center), and RBFs (right).

toolkit. The initial simulation mesh contains 2M points and 3.2M cells. In this
simple scenario, we only deform the surface mesh and regenerate the volume mesh
for each individual of the population (see part II for a scenario directly deforming
an initial volume mesh). Therefore, the actual mesh complexity varies during the
optimization process. For each of the 15 offspring individuals the CFD simulation
runs in parallel on 4 processor cores using OpenMPI (Gabriel et al. 2004) in a
cluster environment with systems containing two 2.4GHz Quad Core Xeon proces-
sors with 24GB RAM. We compute the volume term as V(g) = 1/ [|b,.x — brin ll>
max and b;. are the maximum and minimum points of the bounding
box of deformable object points. In order to preserve the volume in an effective

where b

manner we choose w; = 1 and w, = 50 as weights.

5.3.4 Results

We illustrate the progression of the best solution fitness and of the step size in
figure 5.6. For each of the deformation methods we run the optimization for 100
generations. We show examples of the designs with the best fitness values for each
deformation method in figure 5.5. We note that the resulting deformed cars have
no practically relevant background and only serve for benchmarking purposes.
The overall run time is approximately two weeks for each method. As can be seen
from figure 5.6 (left), both DM-FFD and RBF yield a better solution fitness than
FFD. However, as becomes clear from figure 5.6 (right), the step size of FFD is not
as close to convergence as for the other methods, which might be an explanation
for the higher fitness value. However, the step sizes of all optimizations did not
fully converge within the number of iterations performed. This is mainly due to
the initial step size being too small—a common problem when dealing with an
unknown objective function.
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Figure 5.6: Progression of best solution fitness (left) and step size (right) during optimiza-
tion. Initial fitness values are equal for all methods and therefore not included here.

5.4 CONCLUSION

From our application benchmark we can draw two major conclusions: First, we can
affirm that in contrast to lattice-based free-form deformation methods radial basis
functions are significantly easier and more flexible to set up while providing equiv-
alent or better results. The manual adaptation of the control lattice to the shape of
the model takes a significant amount of time, while selecting the handle regions for
the RBF method is rather fast and straightforward. Our second conclusion is that
the slightly better results of both direct manipulation methods seems to confirm
the importance of a strong coupling between the optimization parameters—the
genotype—and resulting phenotype within an evolutionary optimization process.

Even though we heavily constrained the range of parameters in the optimization
and we took the change of volume into account for fitness evaluation the resulting
optimized shapes do not directly provide design alternatives ready for production.
To a certain degree, this is due to the simple but inaccurate volume term used in
our benchmark. For a practical scenario, we highly recommend to use a more
accurate volume computation. Nevertheless, the results essentially confirm our hy-
pothesis that maintaining constraints through penalty terms in the fitness function
is error-prone at best and requires time-consuming experiments to provide usable
results. Therefore, we feel that additional constraints yielding more meaningful
results should be directly integrated into the deformation, as we explore in the
third part of this thesis.
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However, we conclude this chapter—and thereby the first part of this thesis—
by revisiting the research question set out for this part: What is a good shape

deformation technique for design optimization? Considering the results of our
application-oriented benchmark, the results of our synthetic benchmarks of chap-
ter 4, as well as general criteria for applicability in design optimization we propose
the following answers:

1.

60

Applicability: Since the geometry representations encountered in design
optimization widely vary, e.g., from simple triangle surface meshes to com-
plex polyhedral volume meshes, the deformation method should be able
to transparently deal with such differing representations. This is a strong
argument for employing space deformation methods.

Robustness: Even though the volumetric meshes used for simulation-based
design optimization generally have rather strict requirements on the mesh
quality, this is not necessarily true for the design prototypes created dur-
ing optimization. Especially when performing the optimization in a fully
automatic manner it is neither always possible nor strictly required that
the prototypes are free of any artifacts. Therefore, the deformation method
should be able to robustly deal with defects in the input geometry. Again,
this is a strong argument for the use of space deformation techniques.

. Flexibility: Throughout our benchmarks, we observe that the need to gener-

ate and maintain complex control structure such as a FFD control grid or a
coarse bounding cage poses a significant burden with regards to the seamless
and flexible application of the method. Especially in case of adaptive refine-
ment and precise satisfaction of user-defined constraints a kernel-based
method such as RBFs offers significant advantages.

Quality: Smoothness and fairness of deformed surfaces are a primary con-
cern in creating design variations. To this end, the use of triharmonic radial
basis functions provides high quality results.

. Performance: The performance of a deformation method is only a minor

factor in the overall optimization run-time, especially in case of simulation-
based optimization loops involving computationally expensive volume mesh
generation steps and physics simulations. Therefore, run-time performance
of the deformation method is not a primary selection criterion.



5.4 Conclusion

In summary, we conclude that:

A good shape deformation technique for design optimization is a
kernel-based space deformation method with high deformation qual-
ity such as provided by global triharmonic radial basis functions.

Consequently, we continue the second part of this thesis by investigating how
to apply and improve RBF-based shape deformation techniques for their use in
design optimization.
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PART II

ADVANCED RBF DEFORMATION
TECHNIQUES

In this part, we investigate the second research question of this thesis:
How to apply and improve existing techniques? More specifically, we
concentrate on the application and improvement of RBF deformation
techniques for their use in design optimization. To this end, we first
introduce a unified framework for combined surface and volume
deformation according to an updated CAD geometry (chapter 6).
We then compare our framework to several other state-of-the-art
techniques (chapter 7), investigate advanced linear solvers to boost
performance, and we examine techniques to prevent self-intersections
in the resulting meshes.






CHAPTER 6

UNIFIED RBF DEFORMATION FRAMEWORK

We begin this chapter with an analysis of the limitations of the design optimization
process presented in the previous chapter 5. Based on this analysis, we present a
flexible and powerful solution to these shortcomings. By exploiting the versatility
of our kernel-based RBF deformations, we develop a unified framework for a more
generalized design optimization process that allows for the combined deforma-
tion of surface and volume meshes according to updated parameters in an initial
CAD-based prototype.

6.1 INTRODUCTION

The passenger car design optimization loop considered in the previous chapter 5
represents a typical and widely used optimization procedure. However, this ap-
proach has at least two essential limitations: First of all, the complete process is
essentially surface-based, i.e., it starts with a polygonal surface mesh as input and
for the setup of the deformation technique, it then performs the optimization on
the surface by deforming the initial design, and the outcome is a deformed surface
mesh, too. In contrast, as already outlined in chapter 1, the more general starting
point of the product development process is an initial prototype created using
a parametric CAD modeling tool. In consequence, this means that there is no
direct connection between the design resulting from the optimization process and
its original prototype. The task of retrieving a CAD-based representation from
the mesh-based design is a non-trivial challenge of its own and poses a serious
obstacle to transferring results obtained during optimization back to the general
product development process.

The second drawback is that the process involves and heavily relies on costly
and complicated mesh generation steps. After the shape deformation step an
additional mesh generation step creates a new volumetric simulation mesh for
each individual of the current population, see figure 6.1. This essentially prevents
the implementation of fully automatic and concurrent optimization processes,
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Figure 6.1: The surface-based design optimization process requires time-consuming mesh
generation steps for the initial design and for each design variation created.

since—depending on the complexity of the input geometry—the meshing step
eventually requires manual interaction of an expert.

As for addressing the first issue—the lack of a relation between optimized design
and initial prototype—an alternative is not to use a discrete polygonal surface mesh
as target representation during optimization, but to create design variations based
on changes of the parameters in the initial CAD geometry. Such a CAD-based
approach to evolutionary design optimization has been presented by Kénig and
Wintermantel (2004). We illustrate such a process in figure 6.2. However, as Konig
and Wintermantel (2004) freely admit, this approach is still limited by the need
for automatic mesh generation steps in each iteration of the optimization loop.

In this chapter, we propose a unified framework for design optimization based on
radial basis functions that overcomes both of these issues. Our framework allows
for the implementation of a design optimization process that allows to change an
initial CAD-based design prototype without the need for costly re-meshing of the
volumetric simulation meshes during the optimization process. We accomplish
this goal by employing a two step procedure: We first compute updated surface
nodes according to an updated CAD geometry and then use this updated surface as
input to a volume deformation. For both of these steps, we exploit the flexibility of
our RBF-based space deformations. This way, we only require a single initial mesh
generation step and we can then perform the optimization loop in a fully automatic
and parallel manner, as illustrated in figure 6.3. Furthermore, our approach offers
the following compelling advantages: It is easy to understand and straightforward
to implement; it is applicable to tetrahedral, hexahedral, or general polyhedral
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Figure 6.2: A CAD-based optimization loop relying on automated mesh generation.

meshes using a single code base; and finally, it more robustly achieves higher
quality results. We note, however, that our framework is directly motivated by the
work of Staten et al. (2011). We build upon their benchmarks, extend upon their
ideas, and contribute to their comparisons through our evaluation in chapter 7.

The general setting for a CAD-based design optimization task is as follows:
Given an initial CAD model G and a volumetric mesh 1 within that geometry,
we generate a shape variation §' by changing the geometric embedding of §
while keeping its topology fixed. The shape deformation technique then adapts
the volume mesh 7 such that the updated version V' conforms to the updated
boundary surface G'. Analogously to the geometric changes in the CAD model, we
only update the geometric embedding of V (i.e., its node positions) in this process,
while keeping the mesh topology (i.e., its connectivity) fixed. See figure 6.3 for an
illustration of a CAD-based design optimization loop based on shape deformation
techniques. Within this scenario we can actually break down the deformation
task into two separate steps: First, we have to compute the updated surface nodes
matching the updated CAD model G'. Second, we compute the locations of interior
volume nodes in accordance to the updated surface nodes.

6.2 SURFACE DEFORMATION

In this section, we describe how to compute the updated surface nodes according
to a modified CAD geometry, see figure 6.4 for an illustration of the process.
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Figure 6.3: A CAD-based design optimization loop relying on shape deformation.

Since in our setting the topology of the CAD surface G stays constant, there is a
one-to-one correspondence between the faces, curves, and corner vertices of G
and G’. Staten and colleagues (Staten et al. 2011) exploit this fact for deforming
curves: Let y: R — R> be a curve in the initial geometry of the initial geometry G,
e.g., the boundary of a surface patch. Then for each curve noden; € V, i.e., a node
of the initial mesh lying on a feature curve, they assume its parameter value u with
n; = y(u) to be constant during the transformation and compute the deformed
node as n/ = y'(u), where y' ¢ G’ is the deformed curve corresponding to
y C G. The deformed curve nodes then act as boundary constraints for deforming
the surface nodes, which Staten et al. performed using either mesh smoothing
or the weighted residual technique. Both, however, lead to a certain amount of
distortion or even inverted surfaces triangles, which in turn negatively impact the
volume deformation. We note, however, that Staten and colleagues did not focus
on the surface deformation aspect but on a comparison of volume deformation
techniques.

In our approach, we extend the curve deformation idea of Staten and col-
leagues to the surface case: For each surface node s; we find its corresponding
face f: I' — R® and its (1, v)-parameters, and define the deformed surface node
as the corresponding point on the deformed face f'(u,v). We first describe how
to find the (u, v)-parameters of a surface node s;, before explaining the actual
mapping from f to f'. Note that the explicit computation of (u, v)-parameters is
only required in case this information is not provided by the meshing process.
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Figure 6.4: Surface deformation procedure. Based on the initial CAD geometry, the initial
surface mesh, and the updated CAD geometry, the surface deformation determines the
updated surface node locations matching the updated CAD geometry.

Given a surface node s;, finding its corresponding face f and (u, v) parameters
in theory amount to projecting s; onto each face f; € G and selecting the closest
one. Although most CAD kernels (Open CASCADE (2012) in our case) provide
this functionality, in practice these projections are both computationally expensive
and numerically instable for complex, trimmed faces. We address both problems
by densely sampling the CAD surface G, which requires only robust and efficient
evaluations and results in samples r; = f;(u;, v;). For each surface node s; we then
find its closest sample point r; and project s; onto f with (1, v;) as initial guess.
We perform this search efficiently through space partitioning: when storing the
samples (rj, U, ), k) in a kD-tree (Samet 1990), finding the closest sample for a
given s; takes less than o.o1ms for a highly dense sampling of about 15M points. In
our experiments, this approach drastically improved the efficiency and robustness
of the projections.

After finding the face f and the (u, v) parameters, we need to move the node
s; to the corresponding point on the deformed CAD face f’. This part is more
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Figure 6.5: Overview of the parameter deformation process for one face.

challenging than for the curve case, since the geometric embedding of a face
f: I > R’ can change in two ways: (i) an adjustment of its geometric parameters,
e.g., spline control points or cylinder radii, and (ii) a change of its parameter
domain I, e.g., due to adjusted trimming curves, see figure 6.5. While (i) simply
amounts to evaluating f' instead of f, (ii) requires to deform the parameter values
(u,v) € C'to(u',v") eI’.

In order to deform the parameter values to the updated parametric domain, we
exploit the versatility of our approach and construct a 2D RBF deformation func-
tion d. : R* — R? for each face f; of the CAD model (see figure 6.5). To this end
we uniformly sample the (1, v)-boundary curves of the faces f; and f;, resulting
in 2D point samples {ry, ..., r,} € ['and {r{, ..., r,} € I'’. Constructing a suitable
2D RBF warp requires only minor changes to the 3D formulation of section 3.5.
In contrast to the 3D case, the 2D biharmonic basis function ¢, (r) = r* log(r) is
differentiable at the center and therefore smooth enough for our scenario. The
polynomial part consists of the basis {r1,, 7,, 73} = {x, ¥, 1}, and the coefficients
wj, gy, are two-dimensional. With these changes, and replacing h; by r;, we solve
a linear system analogous to equation (3.10) for computing the two-dimensional
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Figure 6.6: Volume deformation procedure. Based on the initial volume mesh and the up-
dated surface node locations the volume deformation component determines an updated
volume mesh matching the CAD geometry.

RBF warp d. After performing the parameter warp (u',v') = (u,v) + d;.(u, v) we
compute the deformed surface node as s/ = f/ (u',v’).

6.3 VOLUME DEFORMATION

In this section, we describe how to deform volume meshes using our RBF approach.
The input for the volume deformation consists of three sets of mesh vertices: Surface
nodes {si, ..., s,,} and interior volume nodes {v,, ..., v, } of the initial mesh V, as
well as the updated surface nodes {si, ..., s.,} of V', where the s; and s/ conform
to the CAD geometries G and §', respectively. The goal is to find updated volume
node positions {v], ..., v,}, such that the element quality of the deformed mesh
V' is as good as possible.

As already motivated in section 3.5, we can treat volume deformation as a
scattered data interpolation problem: We search for a function d: R* — R that
(i) exactly interpolates the prescribed boundary displacements d(s;) = (s/ —s;) and
(ii) smoothly interpolates these displacements into the volume mesh interior. We
use RBFs to solve this type of problem and define the deformation function d(x) as
a linear combination of radially symmetric kernel functions (pj(x) =o(||lx - c]-II),
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located at centers ¢; € R® and weighted by wj € IR?, plus a linear polynomial to

guarantee linear precision:

m 4
dx) = ) wigi(x) + ) qum(x), (6.1)
j=1 k=1

where {r;, 5, 713, 74} = {x, ¥, 2, 1} is a basis of the space of linear trivariate polyno-
mials, weighted by coefficients g; € R>. Since we already extensively discussed the
choice of a suitable basis function in section 3.5, we do not repeat it here and simply
state that we choose basis functions ¢(r) = > in order to obtain a deformation
function that is triharmonic, globally C? smooth, and thereby the lowest-order
polyharmonic RBF suitable for our application.

Satisfying the interpolation constraints d(s;) = (s/ —s;) amounts to placing RBF
kernels at the constraint positions (i.e., ¢; = sj) and finding the coefficients w; and

J J
q;. by solving the (m + 4) x (m + 4) linear system

O W =S8, (6.2)
where
[@1(s1) = @u(sy)  mi(sy) - m4(sy) ]
D = §01(5m) (Pm(sm) T[l(sm) 7T4(sm)
my(sy) - mi(s,,) 0 0 ’
L my(sy) -+ 7m4(sy,) 0 0 |
T
W = [wl,...,wm,ql,...,q4] N
and

S = [(s{ —81) .00 (s, —sm),O,...,O]T.

After solving equation (6.2) we can compute the deformed mesh 1’ by simply
evaluating the RBF deformation at each volume node: v] = v; + d(v;). This part
can easily be parallelized and therefore is highly efficient. The computationally
most expensive part is the solution of the linear system of equation (6.2), which
is dense due to the global support of ¢(r). We discuss the performance and the
scalability of our method in section 7.5.
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6.4 SUMMARY

In this chapter, we presented a unified framework for combined surface and volume
deformation according to a modified CAD geometry based on polyharmonic radial
basis functions. The important contribution of this framework is the insight that
by exploiting the versatility of our kernel-based RBF deformations, we are able
implement fully automatic simulation-based design optimization process based on
changes in an initial CAD-based design prototype. Furthermore, our deformations
are easy to implement and a single code base is applicable to arbitrary surface and
volume mesh deformations as well as the deformation of parametric coordinates
within the CAD model.

However, it is important to note that our framework also has its limitations. A
basic assumption of our approach is that the topology of the CAD prototype stays
fixed. While this is a rather conservative assumption for design optimization in
general, it nevertheless limits the space of shapes that we can explore during the
optimization process. Similarly, the search space is limited to that of the CAD
model while in some scenarios the shape space of the discrete mesh might be
preferable. Furthermore, a reliable and automatic assessment of the suitability of
the deformed meshes for simulation can be difficult. However, in the next chapter,
we evaluate our framework by comparing our results to those reported by Staten
et al. (2011). We show that our approach also leads to higher quality elements in
the deformed meshes, thereby allowing for a wider range of deformations during
the optimization process.
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CHAPTER 7

FRAMEWORK EVALUATION

The major goal of this chapter is to provide an evaluation of our proposed uni-
fied deformation framework. To this end, we compare our framework to other
state-of-the-art mesh deformation techniques in terms of quality, performance,
as well as scalability. We demonstrate that our approach more robustly achieves
higher quality results. Furthermore, we extend our approach by analyzing how to
explicitly prevent inverted mesh elements by successively splitting the deformation
into smaller steps. Finally, we investigate the performance of different linear solvers
as well as an incremental least squares solver for the sake of improved scalability.

A fundamental requirement for a shape deformation technique to be usable in
design optimization is to preserve the element quality as much as possible, thereby
allowing for as large as possible geometric changes before inevitably requiring
some remeshing due to element inversion. Staten and coworkers recently proposed
and evaluated several shape deformation techniques, which they compared with
respect to computational performance and element quality on different tetrahedral
and hexahedral meshes (Staten et al. 2011). In this chapter, we build on their results
and contribute to their benchmarking by comparing our RBF-based approach to
the most successful techniques reported in their comparison.

71 SURFACE DEFORMATION QUALITY

As already noted in section 6.2, the quality of the surface deformation is of par-
ticular importance since it essentially constitutes an upper bound on the mesh
element quality obtainable during volume deformation. We compare our surface
deformation to that of Staten et al. (2011) in figure 7.1. In contrast to the method
of Staten et al. (2011), our approach produces high quality surface deformations
of minimal parametric distortion. Thanks to its meshless nature, we can apply
our method to all kinds of faces, such as simple non-trimmed rectangular faces,
trimmed faces with curved boundaries, as well as faces with trimmed holes (see
the Bore and Pipe examples in the next section).
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Figure 7.1: Comparison of element quality in the deformed surface mesh. While there
are distortions in the meshes of Staten et al. (2011) (left), our surface (right) is perfectly
aligned to the updated CAD geometry. Note that distortions in the front of the Bore
model (bottom row) are due to the irregularity of the surface triangulation and not the
deformation.
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72 VOLUME DEFORMATION QUALITY

In this section, we compare the resulting volume mesh element quality of our mesh
deformation technique to the results published in Staten et al. (2011). The examples
include meshes of varying topology, including structured and unstructured hexa-
hedral as well as tetrahedral meshes. The complexity of the models ranges from
10-15k vertices for the Bore and Pipe models up to 130k vertices for the Courier
model. The Canister model used in Staten et al. (2011) was not available to us. Since
Staten et al. provide a detailed description of the different geometric parameters
in the CAD models and how they vary them, we do not reproduce them here.

For the sake of a clear representation, we restrict our comparison to those
methods that either delivered the best results (FEMWARP and LBWARP), or
that have been recommended by the authors for sake of simplicity and efficiency
(Simplex). In order to ensure comparability of the results, we also measure element
quality based on the minimum scaled Jacobian as described by Knupp (2000).
For our RBF volume deformation, we include results for both the original surface
node locations from Staten et al. (2011) (denoted RBF) as well as those obtained by
our surface deformation (denoted RBF-S).

Following the benchmarks of Staten et al. (2011), we investigate two different
types of deformation: relative and absolute deformation. In the former case, we
incrementally update the mesh from the initial design to the full parameter change.
In the latter case, we directly deform the initial mesh to the corresponding pa-
rameter change. As in the benchmarks of Staten et al. (2011), we use N = 20 steps
for both types of deformation. In the following subsections, we present detailed
results for the individual test cases. In order to give the reader an impression of
where in the meshes the element quality becomes particularly low, we present
selected cut-views of the deformed volume meshes in figure 7.2. After performing
an absolute deformation to the full parameter change on both hexahedral and
tetrahedral meshes, we highlight the worst 5% of the elements in red.

7.2.1 Bore Model

The change of parameters in the Bore model tests the ability of the different
methods to deal with scaling and rotation. An example deformation from the
initial mesh to the full parameter change is shown in figure 7.3. As can be seen
from this figure, our method is on par with or better than the FEMWARP and
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Figure 7.2: Cut views of the hexahedral (left) and tetrahedral (right) meshes for the Bore,
Pipe, and Courier models after performing an absolute deformation to the full parameter
change. We highlight the worst 5% of the elements in red.
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7.2 Volume Deformation Quality

LBWARP methods. It is important to note that the element inversion after 75%
parameter change in case of the tetrahedral model is due to a defect in the deformed
surface mesh of Staten et al. (2011). By using our more robust surface deformation
we are able to perform both the relative and the absolute deformation up to a
parameter change of 100% without any inverted elements.

7.2.2 Pipe Model

The change of parameters in the Pipe model tests the ability of the different methods
to deal with nonlinear stretching. We present the initial and final shapes as well as
detailed results in figure 7.4. While our method provides superior results on the
hex model, those on the tetrahedral model are comparable. However, in contrast to
other methods ours does not result in inverted elements at 95% parameter change
for the absolute deformation of the tetrahedral model. Again, the results obtained
using our combined volume and surface deformation are superior.

7.2.3 Courier Model

The Courier model is the most complex model in our comparison. In contrast
to previous examples, the hexahedral mesh of this model is an unstructured one.
Especially in case of the absolute tetrahedral mesh deformation, all methods pre-
sented in Staten et al. (2011) result in inverted elements as soon as reaching a change
of parameter values of 65%. In contrast, our method results in inverted elements
only after a parameter change of 75% (see the results in figure 7.5). Unfortunately,
due to a mismatch between CAD geometry and initial tetrahedral mesh provided
to us, we could not evaluate our surface deformation method for the tetrahedral
Courier model.

7.2.4 Comparison of RBF Deformations

In table 7.1 we report the resulting element quality for different RBF deformations
after performing an absolute deformation to the full parameter change. In all but
one case the triharmonic deformation delivers better results than the biharmonic
one. The higher-order quadharmonic RBF (using ¢,(r) = r°) does not result
in noteworthy improvements. Even worse, in case of the Courier hex model it
even leads to inverted elements due to numerical instabilities. Investigating the
condition number indeed reveals a drastic increase with the order of the basis
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function, being 2.3° for the biharmonic, 2.3'! for the triharmonic, and 6.3" for
the quadharmonic deformation.

73 COMPARISON WITH FFD

In this section, we provide an additional evaluation of deformation quality be-
tween RBFs and direct manipulation FFD. Even though both techniques allow
for deformations of arbitrary volume meshes due to their space-based nature,
there are significant differences in the resulting mesh element quality. We present
two different test scenarios involving three different mesh types: First, we investi-
gate deformation of unstructured tetrahedral and structured hexahedral meshes
of the Pipe model. Second, we present a test-case of the DrivAer aerodynamics
performance reference model (Heft et al. 2012) involving a mesh with arbitrary
polyhedral elements for CFD computations.

In case of DM-FFD, we generate a uniform control lattice enclosing the complete
volume mesh. Unfortunately, the resolution required to satisfy given deformation
constraints as precisely as possible is not known in advance and heavily depends
on the complexity of the deformation and the geometry to be deformed. To ac-
commodate for this, we investigate different control grid resolutions, namely with
5%,10°, 15°, and 25° control points, to which we refer to as DM-FFD-5/10/15/25
below. Still, the problem of automatic control grid generation is a largely unsolved
problem and a serious obstacle for the application of FFD within fully automated
optimization procedures.

Table 7.1: A comparison of RBF deformations showing the minimum scaled Jacobian after
an absolute deformation to the full parameter change.

Bore Pipe Courier

Hex Tet Hex Tet Hex

biharmonic 0.985 0.015 0.92 0.018 0.09
triharmonic 0.995 0.016 0.95 0.019 0.045
quadharmonic  0.995 0.016 0.96 0.017 -0.99
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7.3.1 Pipe Model

In this section, we compare the resulting mesh quality of RBFs and DM-FFD
based on absolute deformation of the unstructured tetrahedral and structured
hexahedral Pipe meshes as a representative example. As before, we present the
results by means of minimum scaled Jacobian in the volume mesh vs. percentage
of parameter change in the CAD model in figure 7.7. The plots show that RBFs
better preserve element quality. Note that while the low resolution DM-FFD-5 test
case results in more or less reasonable mesh quality, the displacement constraints
on the surface mesh are not fulfilled exactly, i.e., the boundary nodes of the volume
mesh do not match the updated CAD surface (see figure 7.6, right, for an example).
In contrast, higher resolutions are not capable of dealing with large changes due
to the increasing locality of the deformation.

7.3.2 DrivAer Model

As an application-oriented benchmark, we investigate an exemplary CFD test case
for the DrivAer model. We use OpenFOAM (2012) for the CFD setup and generate
the volume mesh using the snappyHexMesh utility. The resulting polyhedral mesh
contains 1.2M cells and 1.6M points. To investigate the resulting mesh quality
we use OpenFOAM’s checkMesh tool, which analyzes general mesh properties,
such as connectivity, ordering, and orientation, but also essential mesh quality
characteristics, such as cell orthogonality, aspect ratio, and face skewness. For the
deformation setup we select three handle vertices on the car roof while keeping
the outer boundary of the volume mesh fixed. For the deformation itself we simply
lift the handle vertices upwards.

A cut view of the resulting volume mesh and car surface patch is shown in
figure 7.8. A summary of results as obtained by OpenFOAM’s checkMesh utility
is given in table 7.2. For a detailed description of the individual mesh checks we
refer to the OpenFOAM (2012) documentation. In case of RBFs the volume mesh
is still usable and all mesh quality checks succeed. In case of DM-FFD-10 and
DM-FFD-15 the meshes are still usable, but the cell orthogonality check warns
about one non-orthogonal cell that might spoil the accuracy and/or convergence of
the simulation. Furthermore, we note that for more complex deformations the 10°
and 15° resolutions might not be sufficient to satisfy the displacement constraints
with acceptable precision. In case of the higher resolution DM-FFD-25 setup

84



7.3 Comparison with FFD

Figure 7.6: Pipe model deformation examples. Left to right: Initial mesh, RBF, DM-FFD-s.

Tet Absolute Hex Absolute

[

8

0

g 0.2

) B

2

3

w

£

=

0 | J | J
0 50 100 0O 50 100

% Parameter Change
== RBF-S == DM-FFD-5 == DM-FFD-10 DM-FFD-15 == DM-FFD-25

Figure 7.7: Pipe model deformation results. Mesh quality vs. parameter change.

Table 7.2: Results reported by OpenFOAM’s checkMesh utility. Successful tests are indicated
by a /, warnings by |, and errors by :¢. Numbers denote the worst quality element in the
mesh.

Aspect Ratio  Orthogonality Face Skewness Face Pyramids

Original 6.9/ 64.7 / 3.4/ v
RBF 6.6 / 68.6 / 3.7/ v
DM-FFD-10 7.0/ 71.3 3.6/ v
DM-FED-15 7.0/ 70.7 3.4/ v
DM-FFD-25 2.5e+195 % 179.7 % 1031.8 * *
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Figure 7.8: Cut-view and car surface patch of the resulting volume mesh after deformation.
From top left to bottom right: Original model, zoom to the surface, RBF deformation,
DM-FFD with control grid resolutions of 103, 153, and 25°.



7.4 Inversion-free Deformation

several mesh quality checks fail and the mesh is no longer usable for simulation at
all: The mesh contains 151 high aspect ratio cells, 1353 non-orthogonal faces, 1414
incorrectly oriented face pyramids, and 62 highly skewed faces. For all DM-FFD
setups, figure 7.8 again demonstrates the strong dependence of the resulting shape
on the chosen control grid resolution.

74 INVERSION-FREE DEFORMATION

In this section, we investigate approaches for preventing inverted elements in the
deformed mesh. The prevention of self-intersections and element inversions under
deformation has also been subject to substantial research (Gain and Dodgson 2001;
Angelidis and Singh 2006; Harmon et al. 2011; Shontz and Vavasis 2010; Schiiller
et al. 2013; Paillé et al. 2015; Kovalsky et al. 2015; Liu et al. 2016). A particularly
powerful approach is the construction and integration of a smooth space-time vec-
tor field, which theoretically guarantees the absence of intersections and element
inversions (Angelidis and Singh 2006; Funck et al. 2006; Esturo et al. 2011).

As already observed by Staten and colleagues, relative deformation tends to
better preserve element quality compared to absolute deformation. Therefore, one
could be inclined trying to avoid inverted elements by using smaller and smaller
steps of relative deformation. However, this approach would rely on the relative
geometric parameters in the CAD model to generate the intermediate boundary
nodes for the volume deformation. Therefore, preventing element inversions in
this manner is rather complicated and computationally expensive.

A simple and efficient approach for preventing inversions is to iteratively split
the deformation. Gain and Dodgson (2001) show that a space deformation is guar-
anteed to be free of self-intersections if (i) it has continuous first partial derivatives
and (ii) the determinant of its Jacobian is larger than zero. The first criterion is
naturally fulfilled by our smooth RBF deformations. The second one is fulfilled
if the displacements to be interpolated are sufficiently small. We therefore use
the following procedure to prevent inversions: We initially perform the full defor-
mation. If the deformation results in at least one inverted element, we uniformly
split the deformation into # steps, where # is the current iteration. We repeat this
process until no more inversions occur. We illustrate this approach schematically
in figure 7.9. In the limit case of arbitrarily small displacements our splitting ap-
proach is roughly equivalent to vector field-based approaches. In contrast, however,
our method avoids the increased computational costs for the construction of the
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Figure 7.9: Preventing element inversion through splitting in 2D (top) and 3D (bottom).
Performing a large deformation in a single step leads to inverted elements while splitting
the deformation into smaller steps leads to a mesh without inverted elements.

space-time vector field (Esturo et al. 2011), making our method more practical in
the current volume mesh deformation scenario.

We finally emphasize that even a smooth, inversion-free space deformation
does not necessarily guarantee the absence of inverted elements. Applying the
deformation to all mesh nodes eventually turns the smooth space deformation
into a piecewise linear C° per-element deformation. Therefore, a fundamental
requirement for an inversion-free deformation is a mesh resolution sufficiently
high to faithfully represent the deformation field.

75 PERFORMANCE AND SCALABILITY

In this section, we investigate the performance and the scalability of our method.
As already noted in chapter 6, the computationally most expensive part within
our technique is the solution of the linear system of equation (6.2) for the volume
deformation. This linear system is dense due to the global support of the chosen
radial basis functions @(r) = 2, resulting in an asymptotic complexity of O(m>)
when using standard solvers for dense linear systems.
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While there exist sophisticated techniques for efficiently solving RBF-based sys-
tems like equation (6.2), such as multipole expansion, multi-level approximation,
or greedy center selection (Carr et al. 2001; Wendland 2010; Michler 2011), this
was not necessary in all our test cases. Since most CAD geometries G and their
corresponding volume meshes 1 are constructed from multiple solid components,
we can simply perform the volume deformation individually for each of these
(reasonably small) components. In all our examples this could be done using a stan-
dard linear solver, e.g., the LU factorization of the LAPACK library (E. Anderson
et al. 1999).

Nevertheless, we investigate in the following how to (i) improve the perfor-
mance by using efficient implementations of standard solvers and (ii) improve the
scalability to larger models using an incremental least squares solver.

Since the linear system in equation (6.2) is symmetric but not positive definite,
efficient Cholesky-type solvers are not applicable, leaving us with solvers based
on LU and LDLT factorizations as the default choices. We compared four solver
implementations:

o The general LU decomposition (dgetrf) of LAPACK,
« the LDLT factorization for symmetric matrices (dsytrf) of LAPACK,

« the multi-core LDL' decomposition (dsytrf) of the Intel Math Kernel
Library (MKL) (Intel 2013),

o the GPU-accelerated LU decomposition of MAGMA (Tomov et al. 2010).

The results in table 7.3 show that the performance differs significantly between
solvers. The largest differences exist in case of the Courier model where the
MAGMA-based solver is up to eight times faster than other implementations.
The results for the MKL are almost identical to the MAGMA results for smaller
models, but the difference increases with the model size. The comparison between
LAPACK’s general LU and symmetric LDLT factorizations also shows considerable
differences. Unfortunately, specialized symmetric factorizations were not available
in MAGMA.

Despite the impressive performance improvements the scalability of all these
methods is still limited by their time complexity 9(m>) and memory consumption
O(m?), preventing their use for high resolution meshes. One can observe, however,
that even for densely tessellated models the geometric deformations are still rather
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Bore Hex Bore Tet Pipe Hex Pipe Tet ~ Courier Hex Courier Tet

B NLAPACK dgetrf NNLAPACK dsytrf BEMKL dsytrf ' ' MAGMA THIQR

Bore Pipe Courier

Hex  Tet Hex Tet Hex Tet
LAPACK dgetrf 8.0 12.0 4.5 8.5 140 483
LAPACK dsytrf 7.1 10.0 3.9 6.9 108 362
MKL dsytrf 2.3 3.4 1.3 2.5 29 89
MAGMA 2.3 3.4 1.3 2.3 22 58
IQR 3.0 7.0 3.3 1.8 104 360

Table 7.3: Performance comparison of the RBF volume deformation using different solvers
for the linear system of equation (6.2), averaged over five runs. The table reports deforma-
tion times in seconds. The chart depicts performance differences relative to the GPU-based
MAGMA solver.

simple and smooth, so that a moderate number of RBF kernels is sufficient to
represent the deformation, see also Botsch and Kobbelt (2005). We can therefore
compute the deformation by using only a subset of the surface nodes s; as centers
¢;. This turns the interpolation problem of equation (6.2) into a least squares
approximation problem, where the required number of centers depends on the
complexity of the deformation only—instead of on the complexity of the mesh.
As an implementation of this concept we use the incremental QR solver (IQR)
initially presented in Botsch and Kobbelt (2005). This solver starts by fitting the
polynomial term of equation (3.8) only and then incrementally adds more and more
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RBF kernels ¢; until the least squares error falls below a user-prescribed threshold.
Below we sketch the main ideas of incremental QR solver for completeness.

Using just k basis functions (polynomial and RBFs) instead of the full set of
(m+4) basis functions corresponds to replacing the quadratic (m+4)x (m+4) linear
system @W = § of equation (6.2) by the reduced (m + 4) x k system ® W, =S,
where @, is composed from the k columns of @ corresponding to the k selected
basis functions, and W, are their respective coefficients. This over-determined
system can be solved robustly using the QR factorization:

D, = Q.R;, W, =RQS. (7.1)

The main observation of Botsch and Kobbelt (2005) is that computing the
QR factorization of the full matrix @ iteratively processes column by column for
k =1,...,m+4, and that iteration k basically computes Q. and Ry. In addition, the
least squares error |[® W, — S |? can be determined almost for free without actually
having to compute W,. The IQR solver therefore works similar to a standard QR
solver, but can stop as soon as at iteration k the first k columns of @ yield a
sufficiently accurate least squares solution. Since this algorithm simply chooses the
first k columns of @, a suitable re-ordering of the columns, i.e., of the corresponding
basis functions, is performed in a pre-process. We use a farthest point center
selection strategy, i.e., we select centers such that the minimum distance between
centers is maximized. This type of selection can be computed at negligible cost
and has the advantage that it guarantees a good matrix condition number (Botsch
and Kobbelt 2005).

The complexity of solving the linear least squares system of equation (7.1) is
O(mk?). Hence, in the worst case that all m + 4 columns have to be used the
complexity still is O(m?) as for all other solvers. Since the computational overhead
compared to a standard QR solver is negligible, the performance is on par with
standard (CPU-based) solvers even if the deformation is complex and requires a
large number of centers (see Courier example in table 7.3). However, for simple
deformations, such as the Bore and Pipe examples in table 7.3, the incremental
solver even outperforms the GPU-based MAGMA solver. We note that the user-
prescribed error might negatively influence the resulting element quality if it is
not small enough, thereby offering a trade-off between performance and quality.

Comparing the performance of our RBF-based technique with those investigated
by Staten and colleagues shows that our method is computationally more expensive.
However, in all but one case our method allows to perform an absolute deformation
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to the full parameter change without resulting in inverted elements. Other methods
might only reach this goal by falling back to several steps of relative deformation,
thereby becoming computationally more expensive than our approach.

76 SUMMARY AND CONCLUSION

In this chapter, we presented a comprehensive evaluation of our simple yet ver-
satile framework for high-quality mesh deformation of both surface and volume
meshes. The smoothness of our triharmonic RBF deformations leads to similar
or superior element quality compared to all techniques evaluated in (Staten et al.
2011). The implementation of our framework is straightforward and essentially
requires solving linear systems using standard solvers—at least in its basic ver-
sion. Therefore, it can be considered easier to implement than, e.g., the LBWARP
method. While being similarly straightforward to implement as our method, the
FEMWARP technique has to be derived explicitly for each element type. In con-
trast, our RBF deformations are highly flexible, since the same unified code can
deform arbitrary geometries in arbitrary dimensions. Finally, we note that the full
implementation of our framework including the CAD-based surface deformation
relies on the availability of additional support structures and libraries, i.e., efficient
spatial search structures and a modern CAD kernel.

We also investigated solutions to potential issues arising in mesh deformation for
design optimization. We presented a simple and efficient technique for constructing
inversion-free deformations. Furthermore, we illustrated how the performance
of our approach can be drastically improved by employing efficient GPU-based
linear solvers or incremental least squares solvers.

We conclude this chapter—and thereby the second part of this thesis—by revis-
iting the second research question set out for this thesis: How can we apply and
improve existing techniques?

As for the question of application, we have shown that by consistently exploiting
the flexibility of kernel-based RBF deformations we are able to develop a unified
framework for shape deformation in design optimization. This framework allows
for the implementation of more practical and powerful design optimization pro-
cesses, namely the fully automatic and parallel optimization of CAD-based design
prototypes without the need for costly and error-prone meshing steps during the
optimization loop.
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As for the question of improvement, we highlighted several ways to improve
the basic RBF deformation approach with regards to essential criteria, such as
quality, performance, and scalability. Our simple splitting technique allows for
larger deformations while maintaining high element quality. The use of advanced
linear solvers drastically boosts both performance and scalability to more complex
geometries.

Now that we completed the analysis and application parts of this thesis, we
continue the third part by investigating how to incorporate geometric constraints
directly into the deformation, thereby fostering the creation of more usable and
practical designs during the optimization process.
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PART III

CONSTRAINED DEFORMATION
TECHNIQUES

In this part, we investigate the third research question of this thesis:
How to incorporate additional constraints directly into the deforma-
tion? To this end, we first investigate the use of explicit deformation
energies for the flexible modeling of different material behavior. We
then present a scalable deformation technique based on moving least
squares approximation that incorporates geometric constraints such
as planarity or circularity directly into the deformation, thereby foster-
ing the creation of more feasible designs during optimization. Finally,
we incorporate a technique for the automatic detection of geometric
primitives, thereby reducing the effort to setup the deformation.






CHAPTER 8

CONSTRAINED DEFORMATION

In this final chapter, we present a novel shape deformation method for its use in
design optimization tasks. Our space deformation technique based on moving
least squares approximation improves upon existing approaches in crucial aspects:
It offers the same level of modeling flexibility as surface-based deformations, but
it is independent of the underlying geometry representation and therefore highly
robust against defects in the input data. It overcomes the scalability limitations of
existing space deformation techniques based on globally supported radial basis
functions while providing the same high level of deformation quality. Finally, un-
like existing space deformation approaches, our technique directly incorporates
geometric constraints—such as preservation of critical feature lines, circular cou-
plings, planar or cylindrical construction parts—into the deformation, thereby
fostering the exploration of more favorable shape variations during the design
optimization process.

8.1 INTRODUCTION

Throughout the preceding chapters, we illustrated how deformation techniques can
be effectively used in order to create design variations during a simulation-based
design optimization process. However, even though these techniques drastically
simplify the creation of design variations, their successful application within prac-
tical design optimization tasks comes with a number of challenges:

1. In terms of performance the method might not scale to complex optimiza-
tion scenarios. The RBFs proposed in previous chapters offer high defor-
mation quality due to their built-in minimization of fairness energies, but
the involved dense linear system restrict the method to moderately sized
problems.

2. The method might not offer a sufficient level of modeling flexibility, e.g.,
to simulate inhomogeneous material behavior during deformation. Global
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triharmonic RBFs, which implicitly minimize bending-type energies, fail to
simulate stretching-dominant materials.

3. Critical features required for functionality and realization of design proto-
types might not be properly preserved during deformation.

In this chapter, we present a shape deformation technique based on moving
least squares (MLS) discretization (Fries and Matthies 2004) that improves upon
previous approaches in all of the above aspects: Since we follow a space deformation
approach our method is independent of the underlying geometry representation
and highly robust towards defects in the input data. In terms of deformation quality,
our method is competitive to global triharmonic RBFs. We drastically improve
on the latter in terms of scalability, having to solve sparse linear systems only. By
incorporating explicit stretching and bending energies, we offer the same level of
modeling flexibility as surface-based methods. The key advantage of our novel
technique, however, is that it directly incorporates geometric constraints into the
deformation, thereby fostering the exploration of more meaningful and producible
shape variations during the design optimization process. Finally, in order to make
the setup procedure of our deformation method easier for the designer or engineer,
we incorporate a technique for the automatic detection of geometric primitives
into our deformation framework.

In the following sections, we describe our deformation technique in detail, going
from the fundamentals to the specifics. We begin with a description of a general
deformation model suitable for design optimization (section 8.2). We describe our
approach to space deformation based on subspace techniques in section 8.3, where
we also analyze and compare different choices of subspaces. In order to make our
technique fully independent from the underlying geometry representation, we
describe a spatial discretization of deformation energies in section 8.4. Finally, we
describe how to integrate constraints into the deformation in section 8.5.

8.2 MESH-BASED SURFACE DEFORMATION

In this section, we describe a mesh-based deformation model that is suitable for a
design optimization framework. Since the most common targets for design opti-
mization are sheet metal surfaces, such as car bodies, aircraft wings, or ship hulls,
we concentrate on surface deformation models first. We then extend the resulting
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8.2 Mesh-Based Surface Deformation

NN

Figure 8.1: Handle-based surface deformation of a plane (1100 vertices). From left to right:
Undeformed model, minimization of pure bending, pure stretching, and a mixture thereof
with parameters y, = 0.6 and y; = 1.0. We choose y; = 100 in order to ensure that
prescribed handle and fixed constraints are satisfied.

model to subspace surface deformations and true volumetric space deformations in
the following sections. Note that the deformation model we present in this section
is almost identical to the thin shell deformation approach described in section 3.1.
However, for the sake of extensibility to volumetric space deformations we employ
a slightly simplified formulation here.

Similar to the shape deformation methods presented in the preceding chapters,
we use a handle-based direct manipulation interface to control the deformation:
We distinguish three types of surface regions on the mesh: The handle region
is directly displaced by the user. The fixed region J stays in place. The deformable
region 2 is updated according to the physical deformation method while satisfying
the modeling constraints given by /' and J. We illustrate an example of this
modeling metaphor in figure 8.1, with the handle region in gold, the fixed region
in gray, and the deformable region in blue.

The deformable region 2 should behave in a physically plausible manner, i.e.,
it should deform like a thin shell based on stretching and bending energies. The
deformations occurring in design optimization tasks typically are rather small.
Therefore, a linear deformation model is sufficient, where stretching and bending
are measured by first and second order partial derivatives of the displacement
function d, respectively.

In the continuous setting, the deformationd: § — R3 of a surface S can be
computed by minimizing the energy functional

Eshell [d] = Vs Estretch (d] + Yv Ebend [d] + Yr Eﬁx[d] > (8.1)
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consisting of weighted energy contributions for bending, stretching, and constraint
deviation (Botsch and Sorkine 2008):

Eyeald] = | IVd(oIP d. (5.2

Fuwnald) = | 10dGoP d (5)

Epldl = [ [dx) - a0 dx, (8.4)
JHUF

where Vd denotes the Jacobian of d, Ad = V - Vd its Laplacian, ||| the Frobe-
nius matrix norm or the Euclidean vector norm, and d the prescribed Dirichlet
constraints for the fixed and handle regions.

If we assume that the surface § is discretized by a proper two-manifold triangle
mesh 7 with only non-degenerate triangles, then the most flexible discretization
of the above thin shell deformation energies is one whose degrees of freedom are
the individual vertex positions x,, ..., x,,, or the vertex displacements §, ..., ,,:

dy(x) = ) 8y;(x), (8.5)
i=1

where y; are the piecewise linear shape functions on the triangulation 7. Based
on this discretization we can approximate the above energies (Botsch and Sorkine
2008; Botsch et al. 2010) as

Estretch[dh] = z At ||V6t||2 > (8.6)
teD
Epenaldn] = Y A; 1082, (8.7)
x;€D
Egldil= Y A6 -8, (8.8)
x, € HUF

where A; denotes the Voronoi area of vertex 7, and A, is the area of triangle t. We
use the well-established discrete differential operators proposed by Meyer et al.
(2003), which allows us to write the discrete gradient V§, and discrete Laplacian
AJ; as a linear combination of neighboring vertices.

For implementation convenience and easier extensibility in the following sec-
tions, we write the discrete shell energy of equations (8.6)-(8.8) as

Egenldn] = y,1GDI? +y, [LD|? + y; |F(D - D)|*,

(8.9)
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where D = [8?, ,82 |7 is the (n x 3) matrix of per-vertex displacements, and
G and L are gradient and Laplacian matrices containing the required cotangent
weights in each row and having their rows weighted by \/A;, respectively (see
Botsch and Sorkine (2008) and Botsch et al. (2010) for details). F is a diagonal
matrix with F;; = \/A; if x; € ¥ U 7 and F;; = 0 otherwise. The minimization
of the shell energy of equation (8.9) then requires us to solve the normal equations
of the linear least squares system

[v:G'G + y,L'L + y;F'F| D = y;F'FD, (8.10)

which we solve efficiently using sparse Cholesky factorization (Chen et al. 2008).
Note that in case the conditioning of the normal equations becomes a problem, we
could also solve the system directly using a sparse QR factorization method (Davis
2011). In order to ensure proper satisfaction of the Dirichlet boundary constraints,
we typically choose y; to be one or two orders of magnitude larger than the
smoothness weights y, and y;,. This mesh-based surface deformation approach,
depicted in figure 8.1, is our ground truth technique, which we try to reproduce
using more robust and general space deformation methods.

8.3 SUBSPACE SURFACE DEFORMATION

The deformation model described in the previous section offers high flexibility,
since it uses the degrees of freedom of the mesh as degrees of freedom for the
surface deformation. As motivated above, we are aiming at a space deformation
approach, which deforms not only the given surface 7, but the whole space
embedding the object.

In contrast to the surface deformation of the previous section, we are looking
for a deformation function d: Q ¢ R* — R® that deforms the embedding space
Q around the model, while at the same time offering a comparable flexibility and
deformation quality:

k
dy(x) = ) wig;(x),
j=1

where @, ..., ¢ are coarser basis functions (k <« 1) and w; € R’ their coefficients.

In the following, we analyze the modeling flexibility of different subspaces
corresponding to different basis functions ¢;. In order to make the experiments
more comparable to the mesh-based deformation, and to avoid any dependence on
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Chapter 8 Constrained Deformation

Figure 8.2: Surface sampling: Left: Dense random sampling of the mesh. From the dense
samples we select a farthest point subset (center), perform iterative Lloyd relaxation on
this subset (right), and use these points as RBF centers/MLS samples.

potentially insufficient numerical quadrature, we minimize the same vertex-based
discrete shell energy of equation (8.9), but replace the per-vertex displacements
8, by d},(x;). We can then express the n x 3 matrix D of vertex displacements in
terms of the coefficients W = [w¥, s w{]T € R using a n X k subspace matrix
:

D = ®dW with (Di,j = (p](xl) .

Inserting this into the discrete shell energy of equation (8.9) leads to the k x k least
squares system

@' [y,G'G +y,L'L+yF'Flow = @' [y;F'FD|, (8.11)

which has a drastically reduced complexity compared to the previous least squares
system for surface deformation in equation (8.10).

In the following, we compare different choices for the basis functions ¢;. Mo-
tivated by the results obtained in the first two parts of this thesis, we focus on
meshless, kernel-based discretizations, and start with globally supported trihar-
monic and biharmonic RBFs, which however have the drawback of high com-
putational cost and limited scalability. We then analyze compactly supported
Gaussians and Wendland RBFs (Wendland 2010) as well as moving least squares
discretization (Fries and Matthies 2004).

For these kernel-based discretizations, we first need an efficient method to
place the basis functions ¢; on the surface 7. To this end we employ a sampling
strategy based on iterative Lloyd-relaxation (Lloyd 1982), which we illustrate in
figure 8.2. Starting from the initial mesh, we create a dense sampling of the surface
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8.3 Subspace Surface Deformation

by computing random points within each triangle of the mesh. We then select
a subset of k samples from the dense sampling by means of farthest point selec-
tion: We start with a random sample and iteratively add new samples based on
maximizing the minimum distance between the new and the previously chosen
samples. Finally, in order to maximize uniformity of the sampling we perform
Lloyd-relaxation, i.e., we iteratively move each sample to the barycenter of the
dense sample points being closest to the sample (Lloyd 1982). We perform the
search for closest points efficiently through parallelization (Dagum and Menon
1998) and space partitioning (Samet 1990).

8.3.1 Global RBFs

In the preceding chapters, we successfully employed global triharmonic RBFs
for high quality mesh deformation. Following this approach, we can construct a
subspace by using basis functions

9;(x) = |x-¢’

located at centers ;. In figure 8.3 we provide a comparison between the purely
surface-based deformation and a subspace deformation using global triharmonic
RBFs. While triharmonic RBFs work well for minimizing bending (which they do
by construction), they fail to model stretching-dominant materials. Furthermore,
due to their global support the matrix @ is dense, posing a serious limitation in
terms of scalability. Even though biharmonic basis functions (pj(x) =|x- cjll (see
also section 3.5) yield improved results for stretching minimization, they still suffer
from the same scalability limitations as triharmonic basis functions.

8.3.2 Compact RBFs

An alternative to globally supported RBFs are compactly supported RBFs, such as
the C2-continuous Wendland functions

9;(x) = ¢(|x-¢])
~ A=/t ar/p+1), r<p,
= ¢(r) = _
0, otherwise .

The choice of the support radius p is critical for the quality of the resulting subspace.
In our implementation, we set support radii so that at least s basis functions ¢;
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Chapter 8 Constrained Deformation

cover each point x; of the geometry. As illustrated in figure 8.3, the results with
compact RBFs heavily depend on the chosen support radius. A small radius of
s = 5 leads to artifacts in the deformation. Only with a large radius of s = 50 the
subspace produces results comparable to the surface deformation. In this case,
however, the resulting linear system is not sufficiently sparse anymore, so that the
compact RBFs are not an alternative in terms of scalability. Similar limitations
apply to Gaussian RBFs
pi(x) =e

which also lead to a certain amount of smoothness artifacts in the deformed meshes
as we show in figure 8.3.

8.3.3 Moving Least Squares

An alternative to RBFs is the meshless moving least squares (MLS) approximation
method, which allows for the construction of high quality and scalable subspaces,
as we illustrate in figure 8.3. In contrast to compact RBFs, MLS yields high quality
results already with a cover of s = 5. Since a reasonably comprehensive introduction
to MLS is beyond the scope of this thesis we refer the reader to the detailed
introduction of Fries and Matthies (2004) and only provide the required basic
facts. The MLS basis functions (pj(x) are defined as

9x) = p) M W)p(e)wlx—c)

where p(x) is the vector of monomials p(x, y,z) = [L, x, y, z]" and the spatially
varying matrix M(x) € R¥* is the so-called moment matrix

k
M(x) = ) w(x—c)plc;)plc;)" .
=1
The weighting function w(:) is compactly supported and of sufficient smoothness.
In our implementation, we use w(r) = %cos(r/p ST + %, with w(r) = 0 for
r > p. Other choices of smooth weight functions work equally well, see Fries and
Matthies (2004) for details. Unlike RBFs, the MLS basis functions do not have a
simple analytic form, but require the inversion of the moment matrix for function
evaluation. Note that the moment matrix becomes singular if the MLS samples c;
lie in the kernel of a linear polynomial (coplanar samples). In contrast to Martin et
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Bending
(a) surface (b) triharmonic (¢) biharmonic (d) Wendland s = 5

N NNN

(e) Wendland s=50 (f) Gaussians =5 (g) Gaussian s = 50 (h)MLSs=5

Stretching
(i) surface (j) triharmonic (k) biharmonic () Wendland s = 5

B B J oA

(m) Wendland s=50 (n) Gaussians =5 (o) Gaussian s = 50 (p) MLSs =5

Figure 8.3: Subspace deformation of a plane (1100 vertices) minimizing bending (top
rows) and stretching (bottom rows) energies. For each energy type we compare the mean
curvature plot of the ground truth surface deformation, global triharmonic and biharmonic
RBFs, compact Wendland and Gaussian RBFs with small (s = 5) and large (s = 50) support,
MLS with small (s = 5) support. RBFs and MLS use 1000 basis functions.
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Figure 8.4: Performance comparison between global biharmonic RBFs, compact Wendland
RBFs (s = 50), and MLS basis functions (s = 5). Computation time in milliseconds versus
the number of basis function centers.

al. (2010), who switch to more complex generalized MLS basis functions in order to
handle degenerate sampling, we robustly handle this case by replacing the inverse
M~ by the pseudo-inverse M* (Golub and Van Loan 2013). We compute M* as
V3*UT based on the singular value decomposition (SVD) M = UxVT, since this
is the numerically most stable method (Golub and Van Loan 2013; Trefethen and
Bau 1997). Using the SVD is also the computationally most expensive technique
for computing the pseudo-inverse, but for our 4 x 4 matrices this turned out to
not be crucial.

Even though MLS basis functions are more expensive to evaluate than RBFs,
this is not a problem for their application in design optimization, since the MLS
matrix @, and hence all pseudo-inverse computations, can be pre-computed and
re-used throughout the design optimization loop. More importantly, the MLS
discretization scales well to complex models due to the sparsity of @, and the
evaluation of ¢; is trivial to parallelize.

We provide a performance comparison between global and compact RBFs as
well as MLS basis functions in figure 8.4. In this test, we perform deformations with
an increasing number of basis function centers ranging from 1k to 10k degrees
of freedom. We can observe that with an increasing number of basis functions
both compact RBFs and MLS outperform the globally supported RBFs. In terms
of memory usage the globally supported RBFs result in dense system matrices
and therefore have quadratically growing storage requirements. In contrast, both
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compact methods have storage requirements growing only linearly with a constant
depending on the support radius.

In summary, the MLS subspace yields a deformation that combines the strengths
of the three approaches: the flexible energy minimization of mesh-based surface
deformations, the high quality of global RBFs, and the scalability of compactly
supported basis functions. The flexibility of MLS deformations was for instance
demonstrated in (Martin et al. 2010), where MLS basis functions were used to
deform solids, shells, and rods based on physical laws.

8.4 VOLUMETRIC SPACE DEFORMATION

The previous section motivated the use of MLS basis functions as a flexible subspace
for high quality deformation. However, the above comparisons—while using a
space deformation function—still employed the stretching and bending energies
of equations (8.6)—(8.8) based on a surface mesh. In this section, we generalize the
MLS deformation to true volumetric space deformations, which can then robustly
process defect-laden, highly complex, and multi-component input meshes. To
this end, we have to (i) place MLS kernels not only on the surface, but also in the
embedding space (2, and (ii) replace the vertex-based quadrature for integrating
gradients and Laplacians over the surface 7 by a numerical cubature for integration
over the embedding space Q.

The volumetric sampling is a simple extension of the surface sampling shown
in figure 8.2. We first perform a dense sampling of the volume elements and then
choose a subset by means for farthest point sampling. We add this subset to the
initial farthest point sampling of the surface 7 and then perform a combined
Lloyd clustering of both the surface and volume samples, where we give a higher
weight or density to the surface, leading to a slightly higher sampling density of the
surface compared to the volume. As before, we denote the resulting MLS samples
byc,j=1,...,k

In order to determine the integration points ¢;,i = 1, ..., N, we perform exactly
the same sampling strategy, but we make sure that the sampling density of the
integration points ¢; is sufficiently larger than the density of the MLS samples ¢;
(we use N = 4k).
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Figure 8.5: Handle-based deformation of a plane minimizing deformation energies using
a spatial discretization based on MLS (1000 kernels). Pure bending (left), pure stretching
(center), and a mixture thereof (right).

Discretizing the stretching energy of equation (8.2) in space amounts to evaluat-
ing the basis function derivatives at integration points:

2

N N
Egrercnldn] = ) V(g) IVA@&)I? = ) V(g) = [GWI?, (8.12)

i=1 i=1

k
z w;Ve;(t;)
=1

where V(g) is the (approximate) Voronoi volume of integration point ¢;, and G is
a 3N x k gradient matrix with

0 ¢;(t;)

G = Wi
di(t,

Giiv1j = Vi %
0 ¢;(t;)

G3i+2,j =VVi- a]z .

Similarly, discretizing the bending energy of equation (8.3) in space leads to
2

N N
Epenald] = ) V(g) IAd(t)I? = ) V(g) — ILW[?, (8.13)
i=1 i=1

k
Y widg;(t)
=i

with a N x k Laplacian matrix L; ; = WA¢j(ti). For the computation of
analytical basis function derivatives we refer to Fries and Matthies (2004).

For the prescribed modeling constraints we keep the subspace formulation
|F®W — ED|* of equation (8.11). Combining this with the above spatial energies,
i.e., with the MLS version of the gradient matrix G and the Laplace matrix L, leads
to the final k x k linear least squares system

[.G"G + y,L'L + y;®"F'FO|W = y,®"F'FD. (8.14)
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Solving this system yields the desired MLS space deformation, which no longer
depends on the complexity and quality of the input meshes. As demonstrated
in figure 8.5, the MLS deformation based on spatial energies provides the same
deformation quality and flexibility as the surface-based discretization of figure 8.3.

8.5 CONSTRAINED SPACE DEFORMATION

A design prototype typically contains regions with important geometric properties
such as planar components, characteristic feature lines, or circular and cylindrical
couplings. Such geometric features are often essential for the design in order to
fulfill its function or to meet production limitations. The classical approach to
maintain such constraints during an optimization process is to penalize constraint
violation by integrating additional penalty terms into the fitness or cost function.
However, this approach has the severe drawback that infeasible designs are still
created and evaluated, which is particularly unfavorable when the performance
evaluation involves computationally expensive and time-consuming CFD or FEM
simulations.

In contrast, we propose to maintain constraints right from the start by in-
corporating them directly into the deformation method, thereby preventing the
evaluation of infeasible designs. Within our method the user marks a particular
region—probably guided by some mechanism for automatic detection of geo-
metric primitives—as being of a particular constraint type such as, e.g., planarity.
Then, when deforming the shape by manipulating the handle region, our method
automatically makes sure that the corresponding constraint is satisfied while still
minimizing the deformation energy of equation (8.1).

As already noted in chapter 2, several constrained deformation approaches have
been proposed during recent years (Mitra et al. 2013). Most of them, however,
are purely surface-based in nature and therefore too limited for general design
optimization tasks. In contrast, the Shape-Up technique of Bouaziz et al. (2012)
allows to maintain constraints on arbitrary geometric data sets, making it the
method of choice for our application area. In the following, we briefly describe the
technique and show how we adopt it within our system. For a full treatment of the
method, however, we refer the reader to the original paper (Bouaziz et al. 2012).

The key ingredients of Shape-Up are projection operators for different types of
constraints. Let X be the vector of stacked point positions x of an arbitrary discrete
geometric model M. Modeling a constraint (e.g., planarity) for this model requires
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the projection P(X) of X onto the constraint set C, i.e., the smallest change of X
such that it satisfies the constraint. For a planarity constraint, for instance, P(X)
computes the projection onto a least squares fitting plane. For the most common
constraints this projection can be computed rather straightforward, see Bouaziz
et al. (2012) for a description of several projection operators.

Let m be the number of different constraint sets C,,t = 1, ..., m. We can then
measure deviation from the constraints as squared distance from constraint pro-
jections P,(X):

E constr [(X] = Z X - Pt(X)”2 . (8.15)
t=1

Since the projections P,(X) are typically nonlinear functions of X, E_, o, is mini-
mized by alternating optimization (also called block coordinate descent): First X
is kept fixed and all projections X, = P,(X) are computed (local step). Then the
projected target positions X, are held fixed and X is updated by a simultaneous
least squares fit to the target positions X, (global step). This process is iterated
until convergence. Note that while Bouaziz et al. (2012) have shown that the energy
is not increasing in each step, there is no formal proof that this process converges
in a finite number of steps. We choose this type of minimization strategy for the
sake of simplicity and robustness. However, other variants such as a non-linear
conjugate gradient method or a trust-region variant of Newton’s method (Nocedal
and Wright 2006) are applicable as well.
In each iteration, the global step requires the solution of a linear least squares
system of the form
c'cx = C'X, (8.16)

where X is the vector of the stacked projections X,. The matrix C contains the
stacked constraint matrices C,, which combine the mean-centered positions of
constrained points, i.e., for each constraint set €, involving n, points C, is a n, X n,
matrix with entries

C, (G, j) L=y 1=

5,j]) = !

] —ni, otherwise.
t

When combining the individual constraint matrices C, into the global matrix C,
we adjust the columns of €; such that they match the corresponding indices in
the global point set X. The mean-centering of positions allows for translation of
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constraint sets during optimization, thereby improving the overall convergence
rate of the iterative alternating optimization, see also section 2.2 and figure 10 in
Bouaziz et al. (2012).

In order to integrate this approach into our framework, we add a constraint en-
ergy similar to equation (8.15) to our discrete shell energy equation (8.9) (weighted
by y,) and also perform the above alternating optimization procedure. In each
iteration, we first find the constraint projections P(X) (local step) and combine
them into the target vector X, which we rewrite in terms of displacements § instead
of positions x. The global minimization of constraint deviation is then integrated
into the previous least squares system

[7:G"G + y,L'L + y;®"F'FO + y, 0" C'CO| W =
ol [yfFTFD + yCCTX] , (8.17)

which we again solve efficiently using sparse Cholesky factorization (Chen et
al. 2008). We iterate this alternating optimization procedure until convergence,
which typically happens after 1k-10k iterations in our examples—depending
on the complexity of the constraints involved. Note that the convergence rate is
independent from the chosen sampling density which only affects approximation
accuracy.

8.5.1 Alternative constraint formulation

Applying the above constraint formulation in modeling setups with large con-
straint regions such as those obtained from automatic primitive detection (see sec-
tion 8.5.3) reveals a severe limitation of the original Shape-Up formulation: Due
to the mean-centering of constraints, the constraint matrix C can become dense,
such that the resulting linear system can no longer be solved efficiently. The reason
for this is the following: Let 1, be the number of points involved in a particular
constraint set ;. Then in the original formulation this leads to #n, x n, non-zero
entries in the constraint matrix C,, leading to a fully dense matrix in the worst
case scenario of a constraint covering the whole mesh, e.g., a planarity constraint
on a planar mesh.

However, the primary reason for mean-centering is the improved convergence
rate due to translation invariance of each constraint set. We propose an alternative
constraint formulation sharing the same improved convergence behavior while
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ensuring sparsity of the constraint matrix. Instead of mean-centering the points
involved in a constraint set C;, we may also subtract an arbitrary point x, € C,
e.g., the point closest to the mean, thereby leading to n, rows with only two entries

-1, j=p;

GG j) = { .
1, j=i1.

Using the above formulation effectively ensures that the constraint matrix C is
sparse even in case of large constraint regions C,.

8.5.2 Constraint Types

In our current system, we implement five basic geometric constraint types of
fundamental nature and general use: Planarity, circularity, cylinder, feature lines,
and rigid shape constraints. For planarity and circularity constraints we employ
projection operators described by Bouaziz et al. (2012). For the cylinder constraint,
we use the cylinder fitting method described by Schneider and Eberly (2002)
and project the points back onto the fitted cylinder. Our feature line constraint is
modeled as a conformal matching of the points on the initial feature line, which
therefore might translate, rotate, and uniformly scale. Similar to the feature line
constraint, we also support shape constraints based on rigid matching, allowing
for translation and rotation only. This constraint can be useful in a number of
settings, e.g., in order to keep complete components of a design rigid, or to rigidly
maintain the shape of selected mesh elements—such as boundary layer cells in a
CFD mesh—which are of particular importance for accurate physical performance
calculation. In figure 8.6, we show synthetic examples demonstrating the effect
of each constraint type. Note that due to the iterative nature of the alternating
optimization, the resulting meshes do indeed minimize the deformation energy
while satisfying the geometric constraints.

8.5.3 Automatic Constraint Detection

The manual selection of geometric primitives in a mesh can be a tedious and
time-consuming task. In order to speed up the setup process and guide the designer
towards meaningful constraints, we employ a procedure for the automatic detection
of primitives in the surface mesh which then can be used as constraints during
deformation. Note that even though in some design optimization scenarios it is
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Figure 8.6: Synthetic constraint examples. For each constraint type (planarity, circularity,
feature line, cylinder, rigidity) we show the original mesh, the deformation without con-
straint, and the deformation minimizing bending and constraint energies using y, = 1.0
and yp, = 10 as weights.
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Figure 8.7: Left: Cube with sharp feature edges (orange), face (green) and vertex normals
(red). Center/right: Automatically detected primitives in the Fandisk and Joint models.
Each colored region corresponds to a plane or cylinder primitive.

possible to transfer information about geometric primitives from a corresponding
CAD model, this is not necessarily the case in purely mesh-based modeling or
reverse engineering scenarios.

The automatic detection of geometric primitives in point sets is a well-known
problem in the context of surface reconstruction and segmentation. One of the
most widely used techniques is the random sample consensus (RANSAC) algo-
rithm introduced by Fischler and Bolles (1981). The core idea of this technique is
to repeatedly draw random samples defining a geometric primitive from given
point data and then to evaluate how well the primitive approximates the rest of
the data set, see Roth and Levine (1993) for details. Our primitive detection is
based on a combination of the efficient RANSAC algorithm described by Schnabel
et al. (2007) and a forward search technique (Atkinson et al. 2004; Fleishman et al.
2005) to further refine the estimated primitives.

A key question when using the above techniques on a surface mesh is the
choice of input data. Simply using mesh vertices and vertex normals leads to
unsatisfactory results, since the normals at vertices on sharp feature edges are not
aligned with the normal direction of the (multiple) geometric primitives such a
vertex belongs to, see figure 8.7 left. We resolve this issue by using face barycenters
and face normals as input instead. The detected primitives are then assigned to all
vertices belonging to the corresponding faces, thereby allowing a vertex to belong
to multiple primitives. Our system currently supports plane, cylinder, sphere, and
cone primitives, see figure 8.7 for examples. From the set of detected primitives
the user then selects those to be preserved during deformation.
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8.6 RESULTS

In this section, we present different deformation results using our constrained
space deformation technique. We use the Eigen (Guennebaud 2010) library for
efficient matrix operations and the sparse Cholesky decomposition of CHOLMOD
(Chen et al. 2008) for solving linear systems. We parallelize the evaluation of MLS
basis functions and their analytical derivatives using OpenMP (Dagum and Menon
1998). In a typical modeling scenario satisfying the prescribed fixed and handle
constraints is of highest importance and geometric constraints satisfaction is
typically more important than smoothness minimization. Therefore, we select the
weights balancing the individual constraint contributions such that y¢ > y. >y,
where y; = 1000, y. = 10, y,, = 1. We also normalize the different weights by
the number of constraints prescribed for a given type and region.

8.6.1 Surface Deformation

In this section, we present examples for constrained deformations on surface
models of typical mechanical parts, such as they occur within design optimization
scenarios. We begin with example deformations of the Fandisk model in figure 8.8.
In this setup, we keep the bottom part of the model fixed and translate the handle
region to the left. We select a subset of the sharp edges of the model as feature
lines, and an additional planar constraint area in the upper left area. As becomes
clear from the illustration, deforming the model without constraints distorts both
feature lines and the planar region, whereas with constraints both of them are
nicely preserved.

We illustrate example deformations of the Joint model in figure 8.9. We keep the
bottom fixed, lift the top handle region, and impose a circularity constraint on the
pipe-like opening. Without the constraint the opening would no longer fit with
connecting parts, with the constraint, it does. The rightmost image in figure 8.9
shows the use of an additional planarity constraint. In this case, the initially already
planar region deforms in such a way that the resulting mesh minimizes both the
smoothness and planarity energies. In figure 8.10 we present a deformation example
of the Joint model using constraints determined through our automatic geometric
primitive detection. We keep the bottom fixed again and use the top cylinder
region as a handle.
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LA

Figure 8.8: Deformation of the Fandisk model. From left to right: Original model, defor-
mation without constraints, with feature line and planarity constraint.

Figure 8.9: Deformation of the Joint model. From left to right: Original model, deforma-
tion without constraints, with a circularity constraint, and with a additional planarity
constraints.

a5 Y-

Figure 8.10: Deformation of the Joint model using automatically detected geometric
primitives. Left: Original setup keeping the bottom fixed and using the top cylinder region
(golden) as a handle. Right: Deformed model.

Figure 8.11: Deformation of the DrivAer model. Left: Original setup. Right: Stretching the
front while keeping the wheelhouse circular.
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Finally, as a more complex and application-oriented example, we include a defor-
mation of the DrivAer (Heft et al. 2012) reference shape for car body aerodynamics
in figure 8.11. The mesh contains 465k vertices, and we use 4k MLS samples to
discretize the displacements and about 16k cubature points to discretize the de-
formation energies. As can be seen from the illustration, the circular shape of the
wheelhouse is nicely preserved. We also note that deformations using global RBFs
would not be easily applicable to this scenario: The number of user-prescribed
handle and fixed constraints is much too high to be feasible for dense linear sys-
tems solvers. However, advanced RBF methods such as specialized incremental
QR solvers (Botsch and Kobbelt 2005) or fast multipole methods (Carr et al. 2001;
Wendland 2010) might still be applicable.

8.6.2 Volume Deformation

In this section, we compare the quality of our new volumetric mesh deformation
method to that of our previously proposed RBF technique. We show an example
deformation of a tetrahedral volume mesh containing 13k vertices in figure 8.12. In
this setup, we keep the outer boundary fixed and use the interior sphere-shaped
boundary as handle. We can see that both techniques allow for large deformations
without resulting in inverted mesh elements. In order to provide a quantitative
comparison to our previous results of chapter 7, we analyze mesh quality in terms
of minimum scaled Jacobian. Our new method results in even slightly increased
mesh quality (0.05) compared to our previous RBF deformations (0.03). Both
methods produce similar results without inverted elements, as indicated by their
still positive minimum scaled Jacobians. We refer to chapter 7 for a quantitative
evaluation of mesh quality and element inversion of the RBF technique as well as
other state-of-the-art deformation methods.

As an additional comparison to our previous results of chapter 7, we include a
deformation example of the hexahedral Pipe model containing 11k vertices and 8.5k
cells. We show the original and deformed meshes in figure 8.13. The original mesh
has a minimum scaled Jacobian of 0.98. After performing one step of absolute
deformation to the full parameter change—see chapter 7 for a description of
absolute and relative deformation—the RBF deformation results in a mesh quality
of 0.951, and our new method yields 0.954.
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Figure 8.12: Comparison of volume mesh deformation quality in terms of min. scaled
Jacobian. From left to right: The original mesh (0.12), a triharmonic RBF deformation
(0.03), and our technique (0.05).

Figure 8.13: Deformation of the Pipe model, comparison in terms of minimum scaled
Jacobian. Left: Original model (0.98). Right: Deformed model (0.954).

Figure 8.14: Combined volume and surface deformation of the DrivAer model. Top row:
Original setup and deformation without constraints. Bottom row: Deformation with rigid
shape constraints, close-up of boundary layer elements.
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8.6.3 Combined Surface and Volume Deformation

As already noted in the introduction, an important feature of space deformation
methods is the ability to deform an existing volumetric simulation mesh along
with a surface. Therefore, our final example is a combined surface and volume
mesh deformation of the DrivAer model, as illustrated in figure 8.14. In this case,
we use a hex-dominant polyhedral volume mesh generated using OpenFOAM’s
snappyHexMesh utility, containing 1.3M vertices and 970k cells. We use sk MLS
samples on the surface as well as 2k samples in the volume to discretize displace-
ments. Correspondingly, we use about 28k integration points to discretize our
deformation energies. In order to better preserve the shape of boundary layer
cells, we apply rigid shape constraints on those elements. For the deformation
we lift the roof of the car model, which is a standard deformation in optimizing
car body aerodynamics. After deformation the overall volume mesh quality is
nicely preserved and the mesh is still usable for simulation, as we evaluated using
OpenFOAM’s checkMesh utility. The different meshes yield the following results
for the important cell orthogonality check: The original mesh has a maximum
value of 53.81, the deformed mesh without constraints has 54.52, and the mesh with
rigid shape constraints enabled yields a value of 54.42 (smaller value indicating
higher mesh quality). The less critical aspect ratio and faces skewness checks do
not report significant differences.

8.7 SUMMARY AND CONCLUSION

In this chapter, we presented a novel space deformation technique based on MLS
methods for its use in design optimization scenarios. Our method offers similarly
high quality deformations as our previous RBF deformation technique, but with
significantly increased scalability. Our space-based energy discretization allows for
flexible modeling operations typically only provided by mesh-based deformation
techniques. Even though our technique provides increased flexibility and scalability
compared to RBF deformation, the implementation complexity increases as well.
While RBF deformations simply require the solution of a dense linear system,
our new technique involves Lloyd-relaxation in 3-space, numerical integration,
more complex basis functions and derivatives, as well as the selection of several
parameters such as the constraint weights, the number of sample points, or the
basis function support radii.
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Finally, by adapting and extending the projection-based constraint processing
technique of Bouaziz et al. (2012), we also provide a concrete answer to the third
research question set out for this thesis: How can we incorporate additional con-
straints into the deformation? Our choice of a constraint processing technique
that is able to maintain constraints on arbitrary geometric data sets allows for
a seamless integration into our space deformation framework. Our alternative
formulation of projective constraints increases the scalability of the technique to
modeling scenarios involving large constraint regions, such as required within
practical design optimization tasks. Last but not least, our integration of a tech-
nique for the automatic detection of geometric primitives aids the designer or
engineer during setup, thereby making our method more easily applicable.
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We conclude this thesis by summarizing our main results and contributions, draw-
ing conclusions from the results obtained, and by outlining promising directions
for future research.

The primary goal of the first part of this thesis was to gain a better understanding
of the specific requirements a deformation technique should satisfy in order to
be successfully applicable in the context of design optimization. To this end, we
presented a variety of state-of-the-art deformation methods and analyzed them in
a series of both synthetic as well as application-oriented benchmarks. The major
result of this investigation is a set of specific requirements for shape deformation
methods in design optimization. In summary, the method should be a space defor-
mation in order to be able to deal with a wide variety of geometry representations
and to be robust against potential defects in the input data. It should perform high
quality, smooth deformations based on the minimization of physically inspired en-
ergies in order to preserve the resulting mesh element quality. Finally, the method
should be able to satisfy user-specified displacements exactly while allowing for
the flexible placement of degrees of freedom without the need to generate and
maintain complicated control structures. Based on these requirements, we gave
a concrete recommendation for kernel-based space deformations based global
triharmonic radial basis functions as the shape deformation technique of choice.

In the second part, we concentrated on the application and extension of RBF
deformations to the specific needs within design optimization tasks. To this end,
we introduced a unified framework for RBF deformation that allows for the simul-
taneous deformation of surface and volume meshes based on parameter changes
in an initial CAD-based design prototype. A key idea of this framework is to
exploit the flexibility of kernel-based scattered data approximation methods in
order to warp the parametric coordinates of the surface nodes of a volumetric
simulation mesh. In consequence, this component allows for the implementation
of fully automatic CAD-based design optimization processes without the need for
costly remeshing. It also confirms our previous hypothesis that the flexibility of
kernel-based space deformations are highly beneficial for the implementation of
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effective design optimization processes. We evaluated our framework by compar-
ing it to other state-of-the-art methods and were able to show that our method
more reliably achieves higher quality results. Finally, we extended our deforma-
tion framework by investigating the use of advanced linear solvers for the sake
of improved performance and scalability as well as the use of a simple splitting
technique in order to prevent inverted elements in the deformed meshes.

In the final third part of this thesis, we introduced a space deformation technique
based on moving least squares approximation that improves upon our previous
RBF deformations in crucial aspects: The explicit minimization of user-defined
stretching and bending resistance provides a drastically increased modeling flexi-
bility. The compactly supported MLS basis functions only require the solution of
sparse linear systems and thereby significantly increase the scalability to complex
modeling scenarios. The most important contribution, however, is the combina-
tion of our shape deformation technique with a method for maintaining geometric
constraints, as well as the extension of the latter method to larger constraint sets.
This combination allows for the creation of more feasible, meaningful, and pro-
ducible designs during the optimization process. Furthermore, it prevents the
costly creation and evaluation of infeasible designs, thereby also improving the
general performance of the optimization process. The integration of an automatic
method for discovering geometric primitives in the design further simplifies the
setup procedure of the deformation method.

The majority of work presented in this thesis is the result of a research coop-
eration between Bielefeld University and the Honda Research Institute Europe.
Therefore, the results we obtained are not only of academic or theoretical interest,
but also support fundamental method research for practical applications. During
the course of this cooperation, both our RBF shape deformations as well as parts
of our constrained deformation technique have been integrated into in-house
research software of Honda Research Institute Europe and is used for studying
methods on practical design optimization problems.

Within each of the topics addressed within this thesis there are multiple di-
rections for future work. As for the deformation methods investigated in our
comparison we initially limited ourselves to linear deformation methods only—
generally a reasonable assumption for design optimization. However, since in our
constrained deformation technique we now already solve a non-linear optimiza-
tion problem it might be worthwhile to extend this investigation to non-linear
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methods as well, especially since a comprehensive comparison of such methods is
currently missing from the literature.

The application-oriented benchmark of chapter 5 shows that the setup procedure
of a deformation method is still a manual and tedious task. Therefore, research
towards the automatic setup of the deformation method is a natural direction
for future work (Richter et al. 2016). This could also include the incorporation
of expert knowledge or statistical information such as sensitivity values obtained
from previous optimization runs (Graening and Sendhoff 2014). Similarly, the
adaptation of the deformation setup during the optimization procedure provides a
promising direction for future research.

Although our unified deformation framework effectively enables CAD-based
design optimization loops, there are still open questions regarding the more tight
integration of CAD-based designs into the optimization loop. In the context of
constrained deformation the direct transfer of geometric primitive information
from the CAD model to the discrete model would be an obvious next step. In case
no CAD-based initial prototype is available, e.g., in reverse engineering or rapid
prototyping settings, the transfer of the optimization results back to a CAD model
is a challenging task of its own. Our constrained deformation method with its
integrated constraint detection constitutes a first starting point to re-create a CAD
model based on geometric primitives.

A natural direction for future work is the integration of additional constraint
types such as the maintenance of mutual distances between parts or the adherence
to maximal or minimal widths and heights into our constrained deformation
method. More advanced constraints could include relations between multiple
parts, such as symmetry, orthogonality, or co-planarity, including methods for
the automatic analysis of constraints using an approach similar to (Li et al. 2011).
Additional constraints on the simulation meshes such as our rigidity constraint
on boundary layer elements provide additional opportunities for further research.
Finally, while we thoroughly evaluated our constrained deformation technique by
comparing it to representative tests of our initial benchmarking and evaluation, we
propose to further investigate the performance and effectiveness of our technique
within an industrial-scale design optimization scenario such as the aerodynamic
performance optimization of a passenger car.
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APPENDIX A

THE SURFACE MESH DATA STRUCTURE

In this appendix, we present the design, implementation, and evaluation of an effi-
cient and easy to use data structure for polygon surface meshes. We systematically
investigate the design choices arising during development and we give detailed
reasons for choosing one alternative over another. We describe our implemen-
tation and compare it to other contemporary mesh data structures in terms of
usability, computational performance, and memory consumption. Our evaluation
demonstrates that our new Surface_mesh data structure is easier to use, offers
higher performance, and consumes less memory than other state-of-the-art mesh
data structures.

A1 INTRODUCTION

Polygon meshes, or the more specialized triangle or quad meshes, are the standard
discretization for two-manifold surfaces in 3D or solid structures in 2D. The
design and implementation of mesh data structures therefore is of fundamental
importance for research and development in as diverse fields as mesh generation
and optimization, finite element analysis, computational geometry, computer
graphics, and geometry processing.

Although the requirements on the mesh data structure vary from application to
application, a generally useful and hence widely applicable data structure should
be able to (i) represent vertices, edges, and triangular/quadrangular/polygonal
faces, (ii) provide access to all incidence relations of these simplices, (iii) allow for
modification of geometry (vertex positions) and topology (mesh connectivity),
and (iv) allow to store any custom data with vertices, edges, and faces. In addition,
the data structure should be easy to use, be computationally efficient, and have a
low memory footprint.

Since it is hard to implement a mesh data structure that meets all these goals,
many researchers and developers in both academia and industry rely on publicly
available C++ libraries like the Computational Geometry Algorithms Library (Fabri
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et al. 1998), the Mesquite (Brewer et al. 2003) toolkit for mesh optimization, or
OpenMesh (Botsch et al. 2002) for computer graphics.

However, even these highly successful data structures have their individual
deficits and limitations, as we experienced during years of research and teaching
in geometry processing. In this appendix, we systematically derive the design
choices for our new Surface_mesh data structure and provide an analysis and
comparison to the widely used mesh data structures of CGAL, Mesquite, and
OpenMesh. These comparisons demonstrate that Surface_mesh is easier to use
than these implementations, while at the same time being superior in terms of
computational performance and memory consumption.

A2 RELATED WORK

Due to their fundamental nature, a wide variety of data structures to represent
polygon meshes have been proposed. Some are highly specialized to only represent
a certain type of polygons, such as triangles or quadrilateral elements. Others
are designed for specific applications, e.g., parallel processing of huge data sets.
In general, mesh data structures can be classified as being either face-based or
edge-based. We refer the reader to Kettner (1999) and Botsch et al. (2010) for a
comprehensive overview of mesh data structures for geometry processing.

In its most basic form a face-based data structure consists of a list of vertices
and faces, where each face stores references to its defining vertices. However,
such a simple representation does not provide efficient access to adjacency in-
formation of vertices or faces. Hence, many face-based approaches additionally
store the neighboring faces of each face and/or the incident faces for each vertex.
Examples for face-based mesh data structures include CGALs 2D triangulation
data structure (Pion and Yvinec 2015), ShewchucKk’s Triangle (Shewchuk 1996),
Mesquite (Brewer et al. 2003), and the Visualization and Computer Graphics
Library (VCGLib 2011).

In contrast to face-based approaches, edge-based data structures store the main
connectivity information in edges or halfedges (Baumgart 1972; Guibas and Stolfi
1985; Campagna et al. 1998; Mintyld 1987). In general, edges store references
to incident vertices/faces as well as neighboring edges. Kettner (1999) gives a
comparison of edge-based data structures and describes the design of CGALs
halfedge data structure. Botsch et al. (2002) introduce OpenMesh, a halfedge-based
data structure widely used in computer graphics. Alumbaugh and Jiao (2005)
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describe a compact data structure for representing surface and volume meshes by
halfedges and half-faces.

Furthermore, a fairly large number of publications describe more specialized
mesh representations. For instance, Blandford et al. (2005) introduce a compact
and efficient representation of simplicial meshes containing triangles or tetrahedra.
Other works focus on data structures for non-manifold meshes (De Floriani
and Hui 2005; De Floriani et al. 2010), highly compact representations of static
triangle meshes (Gurung, Laney, et al. 2011; Gurung, Luffel, et al. 2011), or mesh
representations and databases for numerical simulation (Garimella 2004; Tautges
et al. 2004; Seegyoung Seol and Shephard 2006; Edwards et al. 2010).

A.3 DESIGN DECISIONS

While virtually all of the publications cited above describe the specific design
decisions made for a particular implementation, a comprehensive and systematic
investigation of the design choices available is currently lacking from the literature.
We therefore try to provide such an analysis in this section.

As mentioned in the introduction, the typical design goals for mesh data struc-
tures are computational performance, low memory consumption, high flexibility
and genericity, as well as ease of use. Since these criteria are partly contradicting,
one has to set priorities and make certain compromises.

Based on our experience in academic research and teaching as well as in in-
dustrial cooperations, our primary design goal is ease of use. An easy-to-use data
structure is learned faster, allows to focus on the main problem (instead of on
the details of the data structure), and fosters code exchange between academic or
industrial research partners. The data structure should therefore be just as flexible
and generic as needed, but should otherwise be free of unnecessary switches and
parameters. At the same time, however, we have to make sure not to compromise
computational performance and memory consumption. Otherwise the data struc-
ture would be easy to use, but not useful, and hence would probably not be used
at all. In the following, we systematically analyze the typical design choices one
is faced with when designing a mesh data structure. Driven by our design goals
we argue for choosing one alternative over another for each individual design
criterion. We begin with high-level design choices and successively focus on more
detailed questions.

129



Appendix A The Surface Mesh Data Structure

A.3.1 Element Types

The most fundamental question is which types of elements or faces to support.
While in computer graphics and geometry processing triangle meshes still are the
predominant surface discretization (Botsch et al. 2010), quad meshes are at least
as important as triangle meshes for structural mechanics. For many applications,
restricting the supported element types to pure triangle or quad elements is not
an option, though. Polygonal finite element methods (Sukumar and Malsch 2006)
decompose their simulation domain into arbitrary polygons. In discrete exterior
calculus many computations are performed on the dual mesh (Hirani 2003). In
computational geometry, computations on Voronoi diagrams also need arbitrary
polygon meshes (Kettner 2015a). Since we want our data structure to be suitable
for an as wide as possible range of applications we choose to support arbitrary
polygonal elements.

A.3.2 Connectivity Representation

As discussed in section A.2 there are at least two ways to represent the connectivity
of a polygon mesh: a face-based or an edge-based representation.

Face-based data structures store for each face the references to its defining
vertices. While this is sufficient for, e.g., visualization or setting up a FEM stiftness
matrix, it is inefficient for mesh optimization, since vertex neighborhoods cannot
be accessed easily. Some implementations therefore additionally store all incident
faces per vertex (e.g., Brewer et al. (2003) and VCGLIib (2011)), but even then it
is still inefficient to enumerate all incident vertices of a center vertex—a query
frequently required for many algorithms, such as mesh smoothing, decimation, or
remeshing. Furthermore, since for a general polygon mesh the number of vertices
per face and the number of incident faces per vertex are not constant, they have to
be stored using dynamically allocated arrays or lists, which further complicates
the data structure. Edges are typically not represented at all, making it difficult to
implement algorithms operating on such entities.

In contrast, storing the main connectivity information in terms of edges or
halfedges naturally handles arbitrary polygon meshes. The data types for vertices,
(half-)edges, and faces all have constant size. The vertices and face-neighbors of a
face can be efficiently enumerated, as well as the vertices or faces incident to a center
vertex. Attaching additional data to vertices, halfedges, and faces is simple, since all
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1. Target vertex
2. Next halfedge
3. Previous halfedge
4. Opposite halfedge

5. Adjacent face

Figure A.1: Connectivity relations within a halfedge data structure.

entities are explicitly represented. Finally, a halfedge-based data structure allows for
simple and efficient implementation of connectivity modifications as required by
modern approaches to interleaving mesh generation and optimization (Tournois
etal. 2008; Sieger et al. 2010) or simulation (Wicke et al. 2010). We therefore choose
a halfedge data structure to store the connectivity of a polygon mesh. The basic
connectivity relations within a halfedge data structure are shown in figure A.1.

A.3.3 Storage

On an implementation level one has to decide whether to store the mesh entities
in either doubly-linked lists or simple arrays.

Lists have the advantage that they allow for easy removal of individual vertices,
edges, or faces, which is required, e.g., when collapsing edges or removing vertices
in a mesh decimation algorithm. However, this flexibility comes at the price of
higher memory consumption and less coherent memory layout compared to
array-based storage, both resulting in considerable performance loss. We evaluated
this on the halfedge data structure (Kettner 1998) of CGAL (2015b), which allows to
switch between a list-based and an array-based implementation. Our benchmarks
in section A.5 show that the list-based implementation is up to twice as slow as
the array-based version.

Array-based storage on the one hand is more compact and faster, but on the
other hand the removal of mesh entities is more difficult. Typically mesh entities
are first marked as deleted and later removed by some form of garbage collection.
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However, the advantages in terms of performance and memory consumption
clearly outweigh the additional effort needed to support removal. For these reasons
we choose an array-based storage scheme.

A.3.4 Entity References

When using array-based storage for mesh entities, references (or handles) to
entities can be represented either as pointers or indices.

Pointers have three important drawbacks: First, they become invalid upon a
relocation of the array, which happens if the array has to allocate more memory
(e.g., for refinement or subdivision algorithms). While the data structure can auto-
matically update all internally stored pointers, references that are stored externally
by the user will inevitably become invalid. Second, on 64-bit architectures pointers
consume twice as much memory as 32-bit indices. For larger meshes, however,
one has to use 64-bit addressing, since complex meshes easily exceed the 2GB
limit for 32-bit architectures. Finally, pointers cannot be used to access additional
properties of mesh entities that are stored in additional synchronized “property
arrays” (see the next section). We therefore choose indices as entity references.

A.3.5 Custom Properties

Additional information about the mesh entities can be stored either by extending
the mesh entities themselves or by using additional arrays. For instance, vertex
normals can be incorporated either by adding a member variable normal to the
class Vertex, or by having an additional array vertex_normals where the i’th
entry is the normal of vertex i.

The first approach, as e.g. chosen by CGAL, is more elegant from an object-
oriented point of view, but has the following drawbacks: Since the class types of
mesh entities are extended at compile-time, all custom properties are allocated
over the whole running time of the application, even if the properties are used
for a short time only. This does not only waste memory, it also slows down the
algorithms due to a less compact memory layout: Just adding vertex and face
normals to the CGAL mesh by extending the Vertex and Facet types slowed
down our benchmarks (section A.5) by about 25% on average. This can be a sig-
nificant drawback for larger mesh processing applications, where many individual
algorithms need some custom data at some point in time.
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In contrast, additional arrays can be dynamically allocated at run-time, such that
custom properties are just allocated when needed and deleted afterwards (as im-
plemented in OpenMesh and Mesquite). Keeping all property arrays synchronized
upon resize and swap operations can easily be implemented. Furthermore, com-
putations on the property arrays are also more cache-friendly, thereby increasing
performance compared to extended mesh entities. Finally, if the model is meant
to be visualized in an interactive application, property arrays can also be used in
conjunction with OpenGL vertex arrays (normals, colors, texture coordinates),
which speeds up rendering performance considerably. We therefore store custom
properties in additional synchronized arrays.

A.3.6 Ease of Use

Up to this point, the OpenMesh data structure (Botsch et al. 2002), follows most
of the design decisions made so far. From our experience in research and teaching,
however, the level of genericity offered by OpenMesh is not needed in practice.
For instance, custom properties can be allocated both by extending mesh entities
as well as using additional arrays, where due to the former the mesh entities
(and hence the whole mesh) become template classes. Furthermore, the large
(template-parametrized) inheritance hierarchy makes the code unnecessarily hard
to document and understand. In terms of C++ sophistication, the polyhedral data
structure of CGAL requires an even higher level of template expertise, which makes
it hard to use this data structure with students or inexperienced programmers,
too.

To reduce the negative effect that heavy use of templates and complicated in-
heritance hierarchies have on the ease of use of the data structure, we made our
design as simple as possible while maintaining maximum applicability.

A4 IMPLEMENTATION

In the following, we highlight the most important aspects of our implementation.
We first describe the fundamental organization of our new data structure and
successively proceed to higher-level functionality.

Since OpenMesh already satisfies all design choices except simplicity, we started
our implementation from a massively stripped-down and simplified version of
OpenMesh. In contrast to other implementations, ours is concentrated within
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a single class, namely Surface_mesh. While the core of Surface_mesh (without
file I/0O) is implemented in three files using about 2250 lines of code, the part of
OpenMesh that implements the same functionality requires 41 files or 8400 lines of
code. In contrast to CGAL and OpenMesh, Surface_mesh is not a class template,
i.e., it does not require so-called traits classes as template parameters. However,
the fundamental types Scalar and Point can still be defined by simple typedefs.

Surface_mesh implements an array-based halfedge data structure. The basic
entities of the mesh, i.e., vertices, (half-)edges, and faces are represented by the
types Vertex, Halfedge, Edge, and Face, respectively, all of which are basically
32-bit indices. Edges are represented implicitly, since two opposite halfedges (laid
out consecutively in memory) build an edge.

The connectivity information is stored in form of custom properties (i.e., syn-
chronized arrays) of vertices, faces, and halfedges: Each vertex stores an outgoing
halfedge, each face an incident halfedge. Each halfedge stores its incident face, its
target vertex, and its previous and next halfedges within the face. Since opposite
halfedges are laid out consecutively in memory, the opposite halfedge can be ac-
cessed by simple modulo operations on the Halfedge indices and therefore does
not have to be stored explicitly.

Managing internal mesh data as well as dynamically allocated user-defined
properties within the same framework for synchronized arrays on the one hand
simplifies implementing and maintaining the data structure. On the other hand
the performance of the data structure then crucially depends on efficient access to
these properties. Our property mechanism deviates from Mesquite and OpenMesh
in that it (i) avoids inefficient virtual function calls, (ii) does not require error-prone
casting of void-pointers, (iii) avoids unnecessary indirections, and (iv) offers a
cleaner interface. From a user’s point of view, working with a custom property is
as simple as shown in listing A.1.

In addition to access to all incidence relations and custom properties, Sur-
face_mesh also offers higher-level topological operations, such as adding vertices
and faces, performing edge flips, edge splits, face splits, or halfedge collapses. Based
on these methods typical geometry processing algorithms such as smoothing, dec-
imation, subdivision, or remeshing can be implemented conveniently. Since Sur-
face_mesh uses an array-based storage special care has to be taken when removing
items from the mesh. Such operations do not delete mesh entities immediately, but
instead mark them as being to be deleted. The function garbage_collection()
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Surface_mesh mesh;

// allocate property storing a point per edge
Surface_mesh: :Edge_property<Point> edge_points
= mesh.add_edge_property<Point>("property-name");

// access the edge property Like an array
Surface_mesh: :Edge e;
edge_points[e] = Point(x,y,z);

// remove property and free memory
mesh.remove_edge_property(edge_points);

Listing A.1: Working with a custom edge property.

eventually deletes those items from the arrays, while preserving the integrity of
the data structure.

In order to sequentially access mesh entities, we provide iterators for each en-
tity type, namely Vertex_iterator, Halfedge_iterator, Edge_iterator and
Face_iterator. Each iterator stores a reference to the current entity and to the
mesh. The latter is used to automatically detect and skip deleted entities, for
instance when the user collapsed some edges but did not yet clean-up using
garbage_collection(). We decided for these “safe iterators” despite their small
performance penalty, since “unsafe” iterators turned out to be a frequent source of
errors for novice OpenMesh users.

Similar to iterators, we also provide circulators for the ordered enumeration
of all incident vertices, halfedges, or faces around a given face or vertex. Since
there is no clear begin- and end-circulator, we follow the CGAL convention and
use do-while loops for circulators. The traversal of the one-ring neighborhood
of a vertex—which corresponds to a Vertex_around_vertex_circulator—is
shown in figure A.2. An example usage of iterators and circulators is demonstrated
in the smoothing example in listing A.2.
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1 #include <Surface_mesh.h>

2

3 int main(int argc, char** argv)

4 A

5 Surface_mesh mesh;

6

7 // read mesh from file

8 mesh.read(argv[1]);

9

10 // get (pre-defined) property storing vertex positions
11 Surface_mesh: :Vertex_property<Point> points

12 = mesh.get_vertex_property<Point>("v:point");

13

14 // iterators and circulators

15 Surface_mesh: :Vertex_iterator vit, vend = mesh.vertices_end();
16 Surface_mesh: :Vertex_around_vertex_circulator vc, vc_end;
17

18 // Lloop over all vertices

19 for (vit = mesh.vertices_begin(); vit != vend; ++vit)
20 {

21 if (!mesh.is_boundary(*vit))

22 {

23 // move vertex to barycenter of its neighbors
24 Point p(90,0,0);

25 Scalar c(9);

26 vc = vc_end = mesh.vertices(*vit);

27 do

28 {

29 p += points[*vc];

30 ++C;

31 }

32 while (++vc != vc_end);

33 points[*vit] = p / c;

34 }

35 }

36

37 // write mesh to file

38 mesh.write(argv[2]);

39 }

Listing A.2: A simple smoothing program implemented using Surface_mesh.
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KRR

Figure A.2: Traversal of one-ring neighbors of a center vertex. From left to right: 1: Start
from center vertex. 2: Select outgoing halfedge, access its target vertex. 3: Move to previous
halfedge. 4: Move to opposite halfedge, access its target vertex. Steps 1 and 2 correspond to
the initialization of a Vertex_around_vertex_circulator using mesh.vertices(Ver-
tex), steps 3 and 4 to the ++-operator of the circulator.

A.S EVALUATION AND COMPARISON

In this section, we evaluate our mesh data structure and compare it to three other
widely used data structures: OpenMesh, CGAL, and Mesquite. Our evaluation
criteria are ease of use, run-time performance, and memory usage.

All tests were performed on a Dell T7500 workstation with an Intel Xeon E5645
2.4 GHz CPU and 6GB RAM running Ubuntu Linux 10.04 x86_64. All libraries
and tests were compiled with gcc version 4.4.3, optimization turned on (using
-03) and debugging checks disabled (-DNDEBUG).

For each of the mesh libraries in our comparison we used the latest version avail-
able at the time of performing our benchmarks, i.e., OpenMesh 2.0.1, CGAL 3.8, and
Mesquite 2.1.4. To achieve comparable results, we chose double-precision floating
point values for scalars, vertex coordinates, and normal vectors for all benchmarks
and data structures. Since one benchmark requires vertex and face normals, all
data structures allocate these properties, either by extending vertex and face types
(CGAL) or using property arrays (Mesquite, OpenMesh, Surface_mesh).

Note that regarding CGAL we compare to both the list-based and the vector-
based version of the Polyhedron_3 mesh data structure, denoted as CGAL_list
and CGAL_vector, respectively. Furthermore, following Shiue et al. (2004), we
removed the storage for the plane equation from face entities in order to increase
performance.

In contrast to the halfedge data structures of CGAL, OpenMesh, and Sur-
face_mesh, Mesquite employs a face-based data structure that stores both down-
ward adjacency (vertices of a face) and upward adjacency (faces of a vertex).
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A.5.1 Ease of Use

Being our primary design goal, we begin our evaluation by comparing the ease of
use of Surface_mesh to the other libraries.

As already outlined in section A.3.6, simplicity is a key criterion for the ease
of use of a software library. By design, Surface_mesh is as simple as possible
while maintaining high applicability. In contrast, both OpenMesh and CGAL offer
a higher level of genericity. While this enables the customization of the mesh
data structure for specialized applications, it also makes the library less accessible
for students and inexperienced programmers. The differences in complexity are
demonstrated best by example. In listing A.3 we show how to declare a custom
halfedge property in CGAL, which is roughly equivalent to listing A.1 showing
the usage of properties in Surface_mesh. It should become clear from comparing
these examples that our implementation is considerably easier to grasp. Mesquite
offers a similar level of simplicity, but a significantly reduced functionality (no
connectivity modifications).

Compared to OpenMesh, our increased simplicity (and decreased genericity) is
due to the definition of basic types (e.g., use float or double as scalar type, 2D
or 3D vertex coordinates) through typedefs instead of through template parame-
ters. While this allows Surface_mesh not to be a class template, it restricts each
application to use a single Surface_mesh definition. In contrast, OpenMesh and
CGAL allow for several custom-tailored template instances in a single application.

Comparing listings A.1 and A.3 not only serves as an example for evaluating
simplicity, but also demonstrates the differences between CGALs extended entities
and Surface_mesh’s synchronized arrays for property handling. While the decla-
ration of the former is rather involved and bound to compile-time properties, the
latter is easy to use and dynamically allocated at run-time. Both OpenMesh and
Mesquite also support dynamic property arrays. In case of OpenMesh however,
the interface is slightly more complicated. Mesquite’s implementation of properties
relies on casting void-pointers, a practice generally discouraged and also relevant
to our next evaluation criterion.

Especially for less experienced programmers protection against common sources
of errors is a crucial aspect of usability. The use of void pointers in Mesquite
mentioned above can be considered harmful in this context, since this practice
essentially circumvents the static type-safety of the programming language. The
use of pointers as entity references for CGALSs array-based mesh data structure is
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typedef CGAL::Simple_cartesian<double> Kernel;
typedef Kernel::Point_3 Point_3;

template <class Refs>
struct My_halfedge : public CGAL::HalfedgeDS_halfedge_base<Refs>

{
Point_3 halfedge_point;
s
class Items : public CGAL::Polyhedron_items_3
{
template <class Refs, class Traits>
struct Halfedge_wrapper
{
typedef My_halfedge<Refs> Halfedge;
¥
¥

typedef CGAL::Polyhedron_3<Kernel, Items> Mesh;

Listing A.3: Declaring a custom halfedge property in CGAL.

prone to errors, since the pointers (and iterators) become invalid upon resizing.
While OpenMesh uses safe, index-based entity references, its iterators by default
do not skip deleted items, which turned out to be a common source of errors. In
contrast, Surface_mesh’s implementation of safe iterators protects the user from
iterating over deleted entities.

Finally, compilation time is a usability factor frequently overlooked. While the
times to compile the individual programs in our test suite are relatively short,
compilation time becomes a significant factor for the speed and efficiency of the
development process in more complex projects. As can be seen from table A.1,
Surface_mesh offers the fastest compilation times, mostly due to minimizing the
use of templates.

We evaluated the usability of Surface_mesh in a user study among the partici-
pants of a two-day course of mesh processing (involving lectures and programming
exercises) held at the Symposium on Geometry Processing 2011. The attendees had
a varying degree of programming experience and exposure to other mesh libraries.
After the two-days the participants were asked anonymously if Surface_mesh
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2.98

31 I 8 Mesquite
Time 25 243 I8 CGAL list
Mesquite 1.57 2l CGAL _vector
CGAL_list 2.83 139 OpenMesh
CGAL_vector 2.75 ) Surface_mesh
OpenMesh 3.37 1r

Surface_mesh 1.13

0 LI A L

Table A.1: Compilation times (in seconds) of our benchmark program for the different
mesh data structures. The chart shows timings relative to Surface_mesh.

was easy to use and understand for them. Out of 18 participants seven strongly
agreed to this statement (5/5 points), another seven agreed (4/5 points). On average,
Surface_mesh received 4.1/5 points. While this is not a representative survey, the
results are still encouraging.

A.5.2 Performance

In order to compare the efficiency of our implementation with other mesh data
structures we designed several benchmarks, which either evaluate a fundamental
functionality of a data structure (e.g., iterators or adjacency queries) or test the
performance in common application domains (e.g., mesh smoothing or subdivi-
sion). The benchmark tests are described below and their pseudo-code is shown
in algorithms 1-6:

1. Circulator Test: For each vertex enumerate its incident faces. For each face
enumerate its vertices. This test measures the efficiency of iterators and
circulators.

2. Barycenter Test: Center the mesh at the origin by first computing the barycen-
ter of all vertex positions and then subtracting it from each vertex. This test
evaluates the performance of iterators and of the access to and basic compu-
tations on the vertex coordinates.

3. Normal Test: First compute (and store) face normals, then compute vertex
normals as the average of the incident faces’ normals. This test measures
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the performance of iterators, circulators, vertex computations, and custom
properties (storing face and vertex normals).

4. Smoothing Test: Perform Laplacian smoothing by iteratively moving each
(non-boundary) vertex to the barycenter of its neighboring vertices. This
test requires (and evaluates) the enumeration of incident vertices of a vertex.

5. Subdivision Test: Perform one step of V/3-subdivision (Kobbelt 2000) by
first splitting all faces at their centers, smoothing the old vertices, and then
flipping all the old edges. This test mainly evaluates the performance of the
face split and edge flip operators.

6. Edge Collapse Test: First split all faces at their center and then collapse each
newly introduced vertex into one of its (old) neighbors, thereby restoring
the original connectivity. This test evaluates the operators face split and
halfedge collapse.

These benchmarks were performed on the Imp model, consisting of 300k ver-
tices and 600k triangles, and the Dual Dragon model, a dualized triangle mesh
consisting of 100k vertices and 50k polygonal faces. The models are shown in
figure A.4. All tests were iterated sufficiently many times in order to get more
reliable accumulated timings. The results are listed in tables A.2 and A.3. Note
that we also performed the tests with other models and setups (CPU, compiler,
operating system). While the results quantitatively vary to a certain extent, they
were qualitatively equivalent to those we report here.

It can be observed that for some tests the performance varies significantly be-
tween different libraries. While it is hard to track down the reasons in detail, we
point out the most important issues we identified.

For Mesquite, a significant performance penalty comes from the large number of
virtual functions (e.g., to access incidences or vertex coordinates), as well as from
memory fragmentation due to dynamically allocated arrays for storing per-vertex
and per-face incidences. Moreover, enumerating incident vertices of a center vertex
is not directly supported by this face-based data structure and therefore has to
be implemented less efficiently by looping over the vertices of the incident faces.
Since Mesquite does not support connectivity modifications, the subdivision and
collapse test were not implemented.

The performance difference between CGAL_list and CGAL_vector is due to the
higher memory consumption and fragmentation of the list-based version. Both
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Algorithm 1: Circulator Test

Algorithm 2: Barycenter Test

Initialize counter = 0;
for each vertex v do

for each face f incident to v do
| counter = counter + 1;

end
end
for each face f do

for each vertex v incident to f do
| counter = counter — 1;

end

end

Initialize p = [0,0,0];
for each vertex v do

‘ p = p +point(v);
end
p = p/number_of_vertices();
for each vertex v do

‘ point(v) = point(v) — p;
end

Algorithm 3: Normal Test

Algorithm 4: Smoothing Test

for each face f do
‘ Compute the face normal of f;
end
for each vertex v do
n=0,0,0;
for each face f incident to v do
‘ n = n + face_normal(f);
end
vertex_normal(v) = normalize(n);
end

for each vertex v do
if v is not a boundary vertex then
p=1[0,0,0];
c=0;
for each vertex w incident to v do
p = p +point(w);
c=c+1;

end
point(v) = p/c;
end

end

Algorithm s5: Subdivision Test

Algorithm 6: Collapse Test

for each face f do
Compute centroid c;
Split f at centroid ¢;
end
for each old vertex v do
‘ Smooth vertex position;
end
for each old edge e do
‘ Flip e;
end

for each face f do
| split f;
end
for each new vertex v do
‘ Collapse v into one of its neighbors;
end

Figure A.3: The six benchmark tests used to evaluate and compare the run-time perfor-
mance of Surface_mesh to Mesquite, CGAL, and OpenMesh.
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d 776

3.77

Circulator =~ Barycenter =~ Normals  Smoothing Subdivision  Collapse

BB Mesquite BBCGAL _list I8 CGAL_vector " " OpenMesh 1 Surface_mesh

Circulator Barycenter Normals Smoothing Subdivision Collapse

Mesquite 3479 15039 11406 23228 — —
CGAL_list 5329 7298 6642 4976 506 1582
CGAL_vector 2358 3879 5064 2467 312 —
OpenMesh 2359 2443 5356 2071 423 1987
Surface_mesh 1673 1412 4181 1757 294 1547

Table A.2: Timings for performing Algorithms 1-6 on the Imp model. The table lists
timings in ms, the chart visualizes the performance relative to Surface_mesh.

=+
5 ¥
= &
v v

Circulator Barycenter Normals Smoothing Collapse

BB Mesquite BBCGAL _list I8 CGAL_vector " " OpenMesh 11 Surface_mesh

Circulator Barycenter Normals Smoothing Collapse

Mesquite 650 4632 2234 5554 —
CGAL_list 804 1381 1403 1070 74
CGAL_vector 460 718 1057 636 —
OpenMesh 475 760 830 410 86
Surface_mesh 388 655 690 392 71

Table A.3: Timings for performing Algorithms 1-4 and 6 on the Dual Dragon model. The
table lists timings in ms, the chart shows performance relative to Surface_mesh.
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lt

Figure A.4: The three models used in the evaluation. From left to right: Imp model, 300k
vertices, 600k triangles. Lucy model, 10M vertices, 20M triangles. Dual Dragon model,
100k vertices, 50k polygons.

CGAL mesh data structures store 64-bit references, vertex positions, and normal
vectors in extended mesh entities, leading to a less compact memory layout, which
in turn results in performance penalties. Note that the array-based version does
not support removal of entities, so that the collapse test could be implemented
with the slower list-based version only.

Since OpenMesh is closest to Surface_mesh in terms of design and implemen-
tation, it also is close in terms of performance. The differences of about 20-30%
are due to our more efficient mechanism for accessing custom properties, which
requires fewer indirections. Furthermore, our do-while circulators are slightly
more efficient than the for circulators of OpenMesh, which use a rather complex
test for detecting the end of the loop.

The results clearly demonstrate the performance of Surface_mesh to be (in
most cases) superior to or at least on par with the other data structures.

A.5.3 Memory Efficiency

Besides run-time performance, memory consumption is a key criterion to measure
the efficiency of a library, especially when it comes to applications dealing with
highly complex data sets. We compare the memory consumption of the data
structures on three different models: the Imp model (300k vertices, 600k triangles)
and the Dual Dragon (100k vertices, 50k polygons) already used in the performance
comparison and the complex Lucy model (10M vertices, 20M triangles). We present

144



A.5 Evaluation and Comparison

the results in table A.4, both in terms of absolute numbers as well as relative
difference between the data structures.

[N N
o3 S
3 N N 1
o ~
s N ™ xR
2 < — N — o A -
— — — : —
. . — '_:
— - — — —
1
0 I — —
Imp Lucy Dual Dragon

I 1 Mesquite B0 CGAL_list B8 CGAL_vector | " OpenMesh Surface_mesh

Imp Dragon Lucy

Mesquite 88M 16M  2.8G
CGAL_list 172M 3oM  5.5G
CGAL_vector 105M 19M  3.4G
OpenMesh 67M 14M  2.2G
Surface_mesh 60M 12M  1.9G

Table A.4: Memory usage for the Imp, Lucy, and Dual Dragon models. The table lists
resident size memory usage after reading the meshes, without performing any further
tests or processing. The chart visualizes the relative difference to Surface_mesh.

Although a face-based data structure in general consumes less memory than
a halfedge data structure, Mesquite requires more memory than Surface_mesh
because (i) of the overhead of the dynamic arrays used to store incidences, (ii) the
use of 64-bit references, and (iii) the storage of helper data per face and vertex.
In addition to the memory overhead due to the doubly-linked list of the CGAL
list-kernel, both CGAL data structures use 64-bit pointers as references, which
consume twice as much memory than the 32-bit indices employed by OpenMesh
and Surface_mesh. Our slight performance advantage with respect to OpenMesh
comes from the different storage of the information whether a vertex, edge, or face
is deleted. We store this information in custom bool property arrays, which in a
std: :vector<bool> require approximately 1 bit per entity. In contrast, OpenMesh
uses one status byte per entity, similar to Mesquite. These results show that Sur-
face_mesh is superior to other data structures in terms of memory consumption.
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A.6 SUMMARY AND CONCLUSION

Our results show that the design decisions made during the development of a
mesh data structure have a crucial impact on both the usability and the efficiency
of the library. By systematically analyzing the design questions we derived design
decisions that—if carefully implemented—result in a mesh data structure that is
more usable, offers higher performance and consumes less memory than several
other mesh data structures publicly available.

Considering the sometimes drastic differences in performance and memory
consumption between the individual libraries, it is important to keep in mind
that some of them have originally been designed and implemented with a strong
focus on a given application domain, such as computational geometry in case of
CGAL and mesh optimization in case of Mesquite. As a consequence, both libraries
provide significantly more functionality that goes beyond a pure surface mesh
data structure, e.g., Mesquite supports the optimization of surface and volume
meshes within a single framework.

While we are confident with the tests and results achieved thus far, we feel that
our benchmark tests should be expanded to a wider variety of different setups
(i.e. different hardware, operating systems, compilers and mesh models). Further-
more, additional algorithms and additional mesh data structures, for instance
VCGLIb (2011), 1ibigl (Jacobson, Panozzo, et al. 2016), or VTK (Kitware 2010)
could be included in future evaluations.

Our performance and memory benchmarks are a first step towards a general
benchmark for mesh data structures. We made the source code and the results
of the benchmarks publicly available. Furthermore, in order to facilitate wide
adoption of our new data structure, we also made Surface_mesh freely available
under an Open Source license allowing for both academic and commercial usage.
Following our original publication of the data structure it has since been integrated
into the CGAL library as a more efficient alternative to the original halfedge data
structure (Botsch et al. 2015).

While our current work is focused on surface meshes only, we are aware that
applications such as physical simulations require volume meshes. We feel that a
systematic approach as presented in this appendix equally applies to the design and
implementation of volume mesh data structures. In particular, design decisions
such as array-based storage, indices as entity references and custom properties as
synchronized arrays should carry over to such a data structure seamlessly.
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DATA SOURCES

This appendix acknowledges the origins of models used throughout this thesis
that were neither created by the author nor one of his colleagues of the Computer
Graphics and Geometry Processing Group at Bielefeld University:

The Fandisk model is courtesy of Hughes Hoppe,
Microsoft Research, USA.

The Joint model is courtesy of Pierre Alliez, Inria
Sophia-Antipolis, France.

The Civic model is courtesy of the Honda Re-
search Institute Europe GmbH, Germany.

The DrivAer model is courtesy of the Institute
for Aerodynamics and Fluid Mechanics at TU
Munich, Germany.
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The Bore, Pipe, and Courier models are courtesy of Matthew
Staten, Sandia National Laboratories, USA.
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The Lucy model is courtesy of the Stanford
University Computer Graphics Laboratory.

The Dragon model is courtesy of XYZ RGB Inc.
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NOMENCLATURE

CDO
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Ebend
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ix

area. 100, 101
displacement of a deformable vertex. 41

matrix of deformable point displacements. 41, 42
matrix of prescribed displacements. 23, 27, 28, 37, 41, 42
prescribed displacement. 23, 26, 27, 34-37, 41
maximum point of the bounding box. 58

minimum point of the bounding box. 58

function space of twice differentiable functions. 36, 38, 47, 72,
103

control point, kernel, center, sample, cage vertex. 14, 25, 29, 35,
36, 41, 71, 72, 90, 103, 104, 107

function space of infinitely differentiable functions. 35
constraint matrix. 110-112

constraint set. 110-112

deformation function. 9, 10, 12, 14, 22, 23, 26, 34, 36, 41, 70-72,
80-82, 99-102, 108

cage-based deformation function. 29, 30

matrix of displacements. 23, 27, 28, 41, 100-102, 108, 111
deformable region of a model. 10, 99

displacement vector. 9, 12, 23, 25, 27-29, 41, 100-102, 111
FFD deformation function. 25, 27

aerodynamic drag of a parameter vector g. 57

RBF deformation function. 34, 35, 41

shape parameter of a radial basis function. 35

bending energy. 99, 100, 108

constraint energy. 110

fixed energy. 99, 100
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Nomenclature

E
Ega thin shell energy. 99, 100

sretch  Stretching energy. 99, 100, 108

F fixed region on a model. 10, 23, 26, 99

e fitness function of a population. 57

f parametric face f: I' — R>. 68-71

F fixed constraints matrix. 100-102, 108, 111

g parameter vector in evolutionary optimization. 57, 58, 108
r parameter domain of a parametric face f. 68, 70

Vb bending weight. 22, 23, 99-102, 108, 111, 113

Ye constraint weight. 111, 113, 115

Vs fixed weight. 99-102, 108, 111, 115

¥s stretching weight. 22, 23, 99-102, 108, 111

g continuous geometry description such as a spline-based repre-

sentation of a CAD model. 67-69, 71, 89

\ gradient operator. 100, 108

G gradient matrix. 100-102, 108, 111

h handle point € ' U F. 23, 26, 27, 34, 36, 37, 41, 70

FH handle region selected for manipulation. 10, 23, 26, 99

H mean curvature. 45

I first fundamental form of a parametric surface S. 22

I second fundamental form of a parametric surface S. 22

K principal curvatures. 45
Laplacian matrix. 23, 41, 100-102, 108, 111
Laplace operator. 23, 36, 45, 100, 108

M discrete geometric model such as a point set or mesh. 12, 25,
27-30;, 34, 37, 109

M moment matrix. 104, 106

n curve node. 68

(0] embedding space around an object. 12, 101, 107

p projection onto a constraint set €. 110, 111

P vector of monomials p(x, y,2) = [1,x, y, z]". 104

[0} basis function matrix. 27, 37, 40-42, 72, 91, 102, 103, 106, 108, 111
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basis function such as RBF, MLS, or splines. 25, 27, 29, 35-37,
40-42, 71, 72, 79, 88, 91, 101-104, 106, 108

polynomial basis. 35, 37, 70, 72

handle basis function matrix. 41, 42

piecewise linear shape functions on a triangulation 7. 100
orthogonal matrix from QR factorization. 91

polynomial coefficients. 35, 37, 70, 72

control cage. 28, 29

sample point. 69, 70

support radius of a basis function. 103, 104

upper triangular matrix from QR factorization. 91

minimum number of basis functions covering each point x of a
geometry during cover construction. 103, 104

diagonal matrix of singular values o obtained from SVD. 27, 40,
106

singular value. 27, 44

matrix of prescribed surface node displacements. 72, 91

the boundary surface nodes of a volume mesh. 68, 69, 71, 72, 90
smooth parametric surface. 22, 99, 100

integration points. 107, 108

triangular surface mesh representing a continuous surface 8. 9,
10, 22, 23, 45, 100-102, 107

basis function matrix. 41, 42
orthogonal matrix resulting from SVD. 27, 40, 106

vector of local coordinates of a point x with regards to a control
lattice. 25, 27, 41

orthogonal matrix resulting from SVD. 27, 40, 106
vertex of a mesh. 9, 45

volume mesh. 67, 68, 71, 72, 80-82, 89

volume term for a parameter vector g. 57, 58, 108
interior nodes of a volume mesh V. 71, 72

weight matrix. 37, 42, 72, 91, 102, 108, 111

Nomenclature
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Nomenclature

w  weight vector. 35, 37, 41, 70, 72, 101, 102, 108
w,;  aerodynamic drag weight. 57, 58

w  compactly supported weight function. 104
volume weight. 57, 58

x arbitrary point in 3D space. 9, 10, 12, 25, 29, 35, 37, 41, 42, 45, 71,
72, 80-82,100-104, 109, 111, 112

matrix of stacked point positions x. 109-111

parametric curve y: R — R?. 68

=

0 zero vector. 23, 37, 72
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ACRONYMS

CAD

CAM
CFD
CMA-ES
DM-Cages
DM-FFD

DoF

ES

FEM
FEMWARP
FFD

GPU
IQR
LBWARP

MAGMA
MLS
RBF

SVD

Computer-aided Design. 1, 2, 4, 5, 7, 9, 63, 65-71, 73, 76, 77, 79,
84, 87, 89, 92, 114, 121, 123

Computer-aided Manufacturing. 1

Computational Fluid Dynamics. 2, 55, 57, 58, 83, 84, 109, 112
Covariance Matrix Adaptation Evolution Strategies. 55, 56
Direct Manipulation Cage Deformation. 43, 45, 46, 48, 49, 51
Direct Manipulation Free-form Deformation. 26, 40, 41, 43-46,
48, 49, 51, 57, 58, 83, 86

Degree of Freedom. 14, 47-50

Evolution Strategies. 55

Finite Element Method. 2, 55, 109, 130

FEM-based deformation method of Baker (2002). 12, 77, 92
Free-form Deformation. 24-30, 38-43, 45-47, 50-52, 5658, 60,
83

Graphics Processing Unit. 89-92

Incremental QR. 90, 91

Smoothing-based deformation method of Shontz and Vavasis
(2003). 11, 77, 79, 92

Matrix Algebra on GPU and Multicore Architectures. 89-91
Moving Least Squares. 98, 102, 104-109, 115, 117, 119, 122

Radial Basis Function. 17, 34-38, 40-53, 57-61, 65, 66, 70-73, 75,
77,79, 83-87, 89-92, 97, 98, 102-107, 117-119, 121, 122

Singular Value Decomposition. 27, 29, 40, 106
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