Constrained Deformation for Evolutionary Optimization

Daniel Sieger

Graphics & Geometry Group, Bielefeld University

Computer-aided Design and Engineering

Tools and practices for creating highly complex industrial products

Design optimization

- Discover alternative designs with improved properties
- Decrease the need for costly real-world prototypes

Shape deformation

Design optimization

- · Discover alternative designs with improved properties
- Decrease the need for costly real-world prototypes

Shape deformation

Design optimization

- · Discover alternative designs with improved properties
- Decrease the need for costly real-world prototypes

Shape deformation

Design optimization

- · Discover alternative designs with improved properties
- Decrease the need for costly real-world prototypes

Shape deformation

Design optimization

- · Discover alternative designs with improved properties
- · Decrease the need for costly real-world prototypes

Shape deformation

Design optimization

- · Discover alternative designs with improved properties
- · Decrease the need for costly real-world prototypes

Shape deformation

Design optimization

- · Discover alternative designs with improved properties
- · Decrease the need for costly real-world prototypes

Shape deformation

Key Questions

- 1. What is a good deformation technique for design optimization?
 - Fundamental requirements and properties
 - Select from the wide variety of methods

Key Questions

- 1. What is a good deformation technique for design optimization?
 - Fundamental requirements and properties
 - Select from the wide variety of methods
- 2. How to apply and improve existing techniques?
 - Effective application within design optimization
 - Address specific challenges

Key Questions

- 1. What is a good deformation technique for design optimization?
 - Fundamental requirements and properties
 - Select from the wide variety of methods
- 2. How to apply and improve existing techniques?
 - Effective application within design optimization
 - Address specific challenges
- 3. How to incorporate geometric constraints into the deformation?
 - Maintain critical properties such as planarity
 - Maintain deformation quality and flexibility

Outline

- 1. Shape deformation methods for design optimization
 - Introduce the state of the art
 - Benchmarks and comparisons
- 2. Advanced RBF deformation techniques
 - Automatic CAD-based design optimization
 - Avoid costly remeshing
- 3. Constrained deformation
 - Effective constraint preservation
 - High-quality, flexible deformations

Shape Deformation for Design Optimization

Thin Shell Deformation ¹

- Physically-inspired technique suitable for sheet metal surfaces
- Flexible modeling of material behavior
- Based on the minimization of stretching and bending energies

^{1.} Botsch et al., On Linear Variational Surface Deformation Methods, Trans. on Visualization and Computer Graphics, 2008

Limitations

Assumption: Surface ${\mathcal S}$ is a proper triangle mesh

Space Deformation Methods

- Instead of deforming the surface $\mathcal S,$ deform embedding space Ω
 - + Representation independence
 - + Disconnected components
 - + Robustness against defects
- Construct a space deformation function $d: \Omega \subset \mathbb{R}^3 \to \mathbb{R}^3$

Free-Form Deformation² (FFD)

- · Idea: Embed object in control grid and deform grid
- Procedure:
 - 1. Compute local coordinates within the control grid
 - 2. Select and move control points
 - 3. Deform object according to updated control points

$$d(\mathbf{x}) = \sum_{i=0}^{l} \sum_{j=0}^{m} \sum_{k=0}^{n} \delta c_{ijk} \varphi_i(u_1) \varphi_j(u_2) \varphi_k(u_3),$$

^{2.} Sederberg and Parry, Free-Form Deformation of Solid Geometric Models, SIGGRAPH 1986

FFD Limitations

Manipulating large control grids by hand is tedious

Direct Manipulation FFD³

- Move object points directly (constraints)
- · Compute control point displacements satisfying constraints
- Requires solving a linear system (pseudo-inverse, SVD)

^{3.} Hsu et al. Direct Manipulation of Free-Form Deformations, SIGGRAPH 1992

Direct Manipulation FFD³

- Move object points directly (constraints)
- · Compute control point displacements satisfying constraints
- · Requires solving a linear system (pseudo-inverse, SVD)
- Minimizes constraint error and control point movement
- Not physically plausible, not precise enough

^{3.} Hsu et al. Direct Manipulation of Free-Form Deformations, SIGGRAPH 1992

- Deformation as scattered data interpolation problem
 - Exactly interpolate prescribed displacements
 - Smoothly interpolate displacements through space

^{4.} Botsch and Kobbelt, Real-Time Shape Editing Using Radial Basis Functions, Computer Graphics Forum, 2005

- Deformation as scattered data interpolation problem
 - Exactly interpolate prescribed displacements
 - Smoothly interpolate displacements through space
- → Radial basis functions (RBFs)

^{4.} Botsch and Kobbelt, Real-Time Shape Editing Using Radial Basis Functions, Computer Graphics Forum, 2005

- Deformation as scattered data interpolation problem
 - Exactly interpolate prescribed displacements
 - Smoothly interpolate displacements through space
- → Radial basis functions (RBFs)

 $d \colon \mathbb{R}^3 \to \mathbb{R}^3$

^{4.} Botsch and Kobbelt, Real-Time Shape Editing Using Radial Basis Functions, Computer Graphics Forum, 2005

- Deformation as scattered data interpolation problem
 - Exactly interpolate prescribed displacements
 - Smoothly interpolate displacements through space
- → Radial basis functions (RBFs)

$$d(\mathbf{x}) = \sum_{j=1}^m w_j \varphi_j(\mathbf{x}) + \pi(\mathbf{x})$$

^{4.} Botsch and Kobbelt, Real-Time Shape Editing Using Radial Basis Functions, Computer Graphics Forum, 2005

- Deformation as scattered data interpolation problem
 - Exactly interpolate prescribed displacements
 - Smoothly interpolate displacements through space
- → Radial basis functions (RBFs)

basis functions at centers c_j $d(x) = \sum_{j=1}^m w_j \phi_j(x) + \pi(x)$

^{4.} Botsch and Kobbelt, Real-Time Shape Editing Using Radial Basis Functions, Computer Graphics Forum, 2005

- Deformation as scattered data interpolation problem
 - Exactly interpolate prescribed displacements
 - Smoothly interpolate displacements through space
- → Radial basis functions (RBFs)

basis functions at centers c_j $d(x) = \sum_{\substack{j=1\\j=1\\j\neq j}}^m w_j \phi_j(x) + \pi(x)$ weights

^{4.} Botsch and Kobbelt, Real-Time Shape Editing Using Radial Basis Functions, Computer Graphics Forum, 2005

- Deformation as scattered data interpolation problem
 - Exactly interpolate prescribed displacements
 - Smoothly interpolate displacements through space
- → Radial basis functions (RBFs)

^{4.} Botsch and Kobbelt, Real-Time Shape Editing Using Radial Basis Functions, Computer Graphics Forum, 2005

Radial Basis Functions

- · Various choices: Gaussian, multiquadrics, thin plate spline...
- Choose triharmonic basis functions $\varphi(r) = r^3$ so that d minimizes fairness energy:

$$\int_{\mathbb{R}^3} \left\| \frac{\partial^3 \boldsymbol{d}}{\partial x^3} \right\|^2 + \left\| \frac{\partial^3 \boldsymbol{d}}{\partial x^2 \partial y} \right\|^2 + \dots + \left\| \frac{\partial^3 \boldsymbol{d}}{\partial z^3} \right\|^2 dV$$

Radial Basis Functions

- · Various choices: Gaussian, multiquadrics, thin plate spline...
- Choose triharmonic basis functions $\varphi(r) = r^3$ so that *d* minimizes fairness energy:

$$\int_{\mathbb{R}^3} \left\| \frac{\partial^3 \boldsymbol{d}}{\partial x^3} \right\|^2 + \left\| \frac{\partial^3 \boldsymbol{d}}{\partial x^2 \partial y} \right\|^2 + \dots + \left\| \frac{\partial^3 \boldsymbol{d}}{\partial z^3} \right\|^2 dV$$

Determine weights and polynomial coefficients
→ Solve linear system

Performance Comparison⁵

Precomputed deformation, times in seconds

^{5.} Sieger et al., On Shape Deformation Techniques for Simulation-based Design Optimization, New Challenges in Grid Generation and Adaptivity for Scientific Computing, 2015

Robustness

DM-FFD: Solving the linear system using SVD requires clamping of small singular values. Since the clamping value is not known in advance, robustness artifacts might occur.

Quality

Quality comparison using mean curvature:

- FFD methods (center) might lead to smoothness artifacts
- RBFs (right) yield highly smooth results

Quality

FFD: The shape of the deformation depends on grid resolution and not on some form of physically-inspired energy minimization

Volume Mesh Deformation

• Deformation of a hex-dominant volume mesh for CFD simulation

Volume Mesh Deformation

• Deformation of a hex-dominant volume mesh for CFD simulation

• Deformation of a hex-dominant volume mesh for CFD simulation

• Deformation of a hex-dominant volume mesh for CFD simulation

• Deformation of a hex-dominant volume mesh for CFD simulation

- Deformation of a hex-dominant volume mesh for CFD simulation
- Depending on the FFD grid resolution the mesh becomes unusable for simulation

Evaluation Summary

	Performance	Robustness	Quality	Adaptivity	Precision
FFD	•	+	•	-	-
DM-FFD	-	•	•	-	•
RBF	•	+	+	+	+
				- ativa	

• : neutral + : positive - : negative

Key Questions and Answers

1. What is a *good* deformation technique for design optimization? *Kernel-based space deformations* provide the quality, flexibility, and robustness required for design optimization.

Key Questions and Answers

- What is a good deformation technique for design optimization? Kernel-based space deformations provide the quality, flexibility, and robustness required for design optimization.
- 2. How to apply and improve existing techniques?

Advanced RBF Deformation Techniques

Advanced RBF Deformation Techniques ⁶

- Unified framework for combined surface and volume deformation
- · Preventing self-intersections by splitting
- Performance improvements through advanced linear solvers

^{6.} Sieger et al., RBF Morphing Techniques for Simulation-based Design Optimization, Engineering with Computers, 2014.

Advanced RBF Deformation Techniques ⁶

- Unified framework for combined surface and volume deformation
- · Preventing self-intersections by splitting
- Performance improvements through advanced linear solvers

^{6.} Sieger et al., RBF Morphing Techniques for Simulation-based Design Optimization, Engineering with Computers, 2014.

Shape Deformation & Design Optimization

Shape Deformation & Design Optimization

Shape Deformation & Design Optimization

Initial Design

Unified Framework

Procedure:

- 1. Update CAD model
- 2. Surface deformation:

Compute surface points matching updated CAD model

3. Volume deformation:

Compute volume points matching updated surface points

CAD

1. Determine parametric coordinates for each surface node

- 1. Determine parametric coordinates for each surface node
- 2. Construct 2D RBF deformation to warp coordinates

7. Staten et al., A Comparison of Mesh Morphing Methods for 3D Shape Optimization, IMR 2011

Staten et al. 2011

Sieger et al. 2014

Volume Deformation

Volume Deformation Quality

- · Comparison with best techniques from Staten et al. 2011
- · Min. scaled Jacobian vs. parameter change in the CAD model
- · Tetrahedral and hexahedral volume meshes

Key Questions and Answers

- What is a good deformation technique for design optimization? Kernel-based space deformations provide the quality, flexibility, and robustness required for design optimization.
- 2. How to apply and improve existing techniques?

By *exploiting the flexibility of RBFs*, we can implement fully automatic design optimization loops based on CAD prototypes.

Key Questions and Answers

- What is a good deformation technique for design optimization? Kernel-based space deformations provide the quality, flexibility, and robustness required for design optimization.
- How to apply and improve existing techniques?
 By exploiting the flexibility of RBFs, we can implement fully automatic design optimization loops based on CAD prototypes.
- 3. How to incorporate geometric constraints into the deformation?

Constrained Deformation

Constrained Space Deformation for Design Optimization⁷

Combines

- Modeling flexibility of surface-based methods
- Representation-independence of space deformations
- Quality of RBFs
- Improved scalability
- Geometric constraints

^{7.} Sieger et al., Constrained Space Deformation for Design Optimization, Computer-Aided Design 2016

Surface Deformation Revisited

• Surface-based methods allow for flexible modeling of material behavior by explicitly choosing the deformation energy to be minimized

Surface Deformation Revisited

- Surface-based methods allow for flexible modeling of material behavior by explicitly choosing the deformation energy to be minimized
- Goal: Achieve the same flexibility using space deformations

Thin Shell Deformation

Measure stretching and bending by 1st and 2nd order partial derivatives of the displacement function $d: S \to \mathbb{R}^3$

$$E_{\text{stretch}}[\boldsymbol{d}] = \int_{\mathcal{D}} \|\nabla \boldsymbol{d}(\boldsymbol{x})\|^2 \, \mathrm{d}\boldsymbol{x}$$
$$E_{\text{bend}}[\boldsymbol{d}] = \int_{\mathcal{D}} \|\Delta \boldsymbol{d}(\boldsymbol{x})\|^2 \, \mathrm{d}\boldsymbol{x}$$
$$E_{\text{fix}}[\boldsymbol{d}] = \int_{\mathcal{H}\cup\mathcal{F}} \|\boldsymbol{d}(\boldsymbol{x}) - \bar{\boldsymbol{d}}(\boldsymbol{x})\|^2 \, \mathrm{d}\boldsymbol{x}$$

Surface-Based Discretization

• Discretize on the mesh using standard differential operators ⁸

$$E_{\text{stretch}}[\boldsymbol{d}] = \sum_{t \in \mathcal{D}} A_t \|\nabla \boldsymbol{\delta}_t\|^2$$
$$E_{\text{bend}}[\boldsymbol{d}] = \sum_{\boldsymbol{x}_i \in \mathcal{D}} A_i \|\Delta \boldsymbol{\delta}_i\|^2$$
$$E_{\text{fix}}[\boldsymbol{d}] = \sum_{\boldsymbol{x}_i \in \mathcal{H} \cup \mathcal{F}} A_i \|\boldsymbol{\delta}_i - \bar{\boldsymbol{\delta}}_i\|^2$$

→ Solve a linear system:

$$\left[\gamma_{s}\boldsymbol{G}^{\mathrm{T}}\boldsymbol{G}+\gamma_{b}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L}+\gamma_{f}\boldsymbol{F}^{\mathrm{T}}\boldsymbol{F}\right]\boldsymbol{D} = \gamma_{f}\boldsymbol{F}^{\mathrm{T}}\boldsymbol{F}\boldsymbol{D}$$

^{8.} Meyer et al., Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, Visualization and Mathematics, 2003

- Construct a space deformation function $d: \Omega \subset \mathbb{R}^3 \to \mathbb{R}^3$
 - Use meshless approximation methods
 - Represent *d* by basis functions φ_i located at centers c_i :

$$\boldsymbol{d}(\boldsymbol{x}) = \sum_{j=1}^{k} \boldsymbol{w}_{j} \varphi_{j}(\boldsymbol{x})$$

- Construct a space deformation function $d: \Omega \subset \mathbb{R}^3 \to \mathbb{R}^3$
 - Use meshless approximation methods
 - Represent *d* by basis functions φ_i located at centers c_i :

$$\boldsymbol{d}(\boldsymbol{x}) = \sum_{j=1}^{k} \boldsymbol{w}_{j} \varphi_{j}(\boldsymbol{x})$$

- Questions:
 - Which basis functions to choose?
 - Where to place basis functions?

- Construct a space deformation function $d: \Omega \subset \mathbb{R}^3 \to \mathbb{R}^3$
 - Use meshless approximation methods
 - Represent *d* by basis functions φ_i located at centers c_i :

$$\boldsymbol{d}(\boldsymbol{x}) = \sum_{j=1}^{k} \boldsymbol{w}_{j} \varphi_{j}(\boldsymbol{x})$$

- Questions:
 - Which basis functions to choose?
 - Where to place basis functions?

- Construct a space deformation function $d: \Omega \subset \mathbb{R}^3 \to \mathbb{R}^3$
 - Use meshless approximation methods
 - Represent *d* by basis functions φ_i located at centers c_i :

$$\boldsymbol{d}(\boldsymbol{x}) = \sum_{j=1}^{k} \boldsymbol{w}_{j} \varphi_{j}(\boldsymbol{x})$$

- Questions:
 - Which basis functions to choose?
 - Where to place basis functions?

Goal: Generate uniformly distributed points c_j on the surface

Goal: Generate uniformly distributed points c_i on the surface

1. Dense random sampling of each mesh face

Goal: Generate uniformly distributed points c_i on the surface

1. Dense random sampling of each mesh face

Goal: Generate uniformly distributed points c_i on the surface

1. Dense random sampling of each mesh face

Goal: Generate uniformly distributed points c_i on the surface

- 1. Dense random sampling of each mesh face
- 2. Farthest point selection

Goal: Generate uniformly distributed points c_i on the surface

- 1. Dense random sampling of each mesh face
- 2. Farthest point selection
- 3. Lloyd relaxation (k-means clustering)

• Which basis functions φ_i to choose?

- Which basis functions φ_i to choose?
- · Goal: Achieve same modeling flexibility as surface deformation

- Which basis functions φ_i to choose?
- Goal: Achieve same modeling flexibility as surface deformation
- Ground truth: Combine surface energy with space deformation

- Which basis functions φ_j to choose?
- · Goal: Achieve same modeling flexibility as surface deformation
- Ground truth: Combine surface energy with space deformation
- Express D through coefficients W and subspace matrix $\pmb{\Phi}$

 $D = \Phi W$ with $\Phi_{ij} = \varphi_j(\mathbf{x}_i)$

- Which basis functions φ_i to choose?
- · Goal: Achieve same modeling flexibility as surface deformation
- Ground truth: Combine surface energy with space deformation
- Express D through coefficients W and subspace matrix Φ

$$\boldsymbol{D} = \boldsymbol{\Phi} \boldsymbol{W}$$
 with $\boldsymbol{\Phi}_{ij} = \varphi_j(\boldsymbol{x}_i)$

• Leads to a modified linear system:

$$\boldsymbol{\Phi}^{\mathrm{T}}\left[\boldsymbol{\gamma}_{s}\boldsymbol{G}^{\mathrm{T}}\boldsymbol{G}+\boldsymbol{\gamma}_{b}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L}+\boldsymbol{\gamma}_{f}\boldsymbol{F}^{\mathrm{T}}\boldsymbol{F}\right]\boldsymbol{\Phi}\boldsymbol{W} = \boldsymbol{\Phi}^{\mathrm{T}}\left[\boldsymbol{\gamma}_{f}\boldsymbol{F}^{\mathrm{T}}\boldsymbol{F}\boldsymbol{\bar{D}}\right]$$

• Global triharmonic RBFs

$$\varphi_j(\boldsymbol{x}) = \|\boldsymbol{x} - \boldsymbol{c}_j\|^3$$

• Energy minimization built-in

• Global triharmonic RBFs

$$\varphi_j(\boldsymbol{x}) = \|\boldsymbol{x} - \boldsymbol{c}_j\|^3$$

- Energy minimization built-in
- · Good results for bending

• Global triharmonic RBFs

$$\varphi_j(\boldsymbol{x}) = \|\boldsymbol{x} - \boldsymbol{c}_j\|^3$$

- Energy minimization built-in
- · Good results for bending, bad results for stretching

• Global triharmonic RBFs

$$\varphi_j(\boldsymbol{x}) = \|\boldsymbol{x} - \boldsymbol{c}_j\|^3$$

- Energy minimization built-in
- · Good results for bending, bad results for stretching
- Global support \rightarrow dense linear systems

• Compactly supported RBFs

$$\varphi_j(\boldsymbol{x}) = \varphi\left(\left\|\boldsymbol{x} - \boldsymbol{c}_j\right\|\right) = \varphi(r) = \begin{cases} (1-r)^4(4r+1), & r < \sigma, \\ 0, & \text{otherwise}. \end{cases}$$

• No built-in energy minimization

• Compactly supported RBFs

$$\varphi_j(\boldsymbol{x}) = \varphi\left(\left\|\boldsymbol{x} - \boldsymbol{c}_j\right\|\right) = \varphi(r) = \begin{cases} (1-r)^4(4r+1), & r < \sigma, \\ 0, & \text{otherwise}. \end{cases}$$

- No built-in energy minimization
- Small support \rightarrow sparse linear system, bad results

• Compactly supported RBFs

$$\varphi_j(\boldsymbol{x}) = \varphi\left(\left\|\boldsymbol{x} - \boldsymbol{c}_j\right\|\right) = \varphi(r) = \begin{cases} (1-r)^4(4r+1), & r < \sigma, \\ 0, & \text{otherwise}. \end{cases}$$

- No built-in energy minimization
- Large support \rightarrow dense linear system, good results

$$\varphi_j(\mathbf{x}) = \mathbf{p}(\mathbf{x})^{\mathrm{T}} \mathbf{M}^{-1}(\mathbf{x}) \mathbf{p}(\mathbf{c}_j) w(\mathbf{x} - \mathbf{c}_j)$$

^{9.} Fries et al., Classification and Overview of Meshfree Methods, Technical Report, TU Braunschweig, 2003

$$\varphi_j(\boldsymbol{x}) = \boldsymbol{p}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{M}^{-1}(\boldsymbol{x}) \boldsymbol{p}(\boldsymbol{c}_j) \boldsymbol{w}(\boldsymbol{x} - \boldsymbol{c}_j)$$
polynomial basis

^{9.} Fries et al., Classification and Overview of Meshfree Methods, Technical Report, TU Braunschweig, 2003

^{9.} Fries et al., Classification and Overview of Meshfree Methods, Technical Report, TU Braunschweig, 2003

^{9.} Fries et al., Classification and Overview of Meshfree Methods, Technical Report, TU Braunschweig, 2003

Moving Least Squares (MLS) basis functions⁹

• More complex form, inversion of *M* required

^{9.} Fries et al., Classification and Overview of Meshfree Methods, Technical Report, TU Braunschweig, 2003

- Moving Least Squares (MLS) basis functions
- + Small support → sparse linear system, good results

- Moving Least Squares (MLS) basis functions
- + Small support \rightarrow sparse linear system, good results

• Goal: Fully space-based discretization of stretching and bending energies using MLS approximation

- Goal: Fully space-based discretization of stretching and bending energies using MLS approximation
- Replace vertex-based integration over the surface ${\mathcal S}$ with purely space-based integration method

- Goal: Fully space-based discretization of stretching and bending energies using MLS approximation
- Replace vertex-based integration over the surface ${\mathcal S}$ with purely space-based integration method
- Use Lloyd-based sampling to determine integration points t_i

• Evaluate gradients and Laplacians of φ_i at integration points t_i :

$$E_{\text{stretch}} = \sum_{i=1}^{N} V_i \|\nabla \boldsymbol{d}(\boldsymbol{t}_i)\|^2 = \sum_{i=1}^{N} V_i \left\|\sum_{j=1}^{k} \boldsymbol{w}_j \nabla \boldsymbol{\varphi}_j(\boldsymbol{t}_i)\right\|^2$$
$$E_{\text{bend}} = \sum_{i=1}^{N} V_i \|\Delta \boldsymbol{d}(\boldsymbol{t}_i)\|^2 = \sum_{i=1}^{N} V_i \left\|\sum_{j=1}^{k} \boldsymbol{w}_j \Delta \boldsymbol{\varphi}_j(\boldsymbol{t}_i)\right\|^2$$
Volumetric Space Deformation

• Evaluate gradients and Laplacians of φ_i at integration points t_i :

$$E_{\text{stretch}} = \sum_{i=1}^{N} V_i \|\nabla \boldsymbol{d}(\boldsymbol{t}_i)\|^2 = \sum_{i=1}^{N} V_i \left\|\sum_{j=1}^{k} \boldsymbol{w}_j \nabla \varphi_j(\boldsymbol{t}_i)\right\|^2$$

$$E_{\text{bend}} = \sum_{i=1}^{N} V_i \|\Delta \boldsymbol{d}(\boldsymbol{t}_i)\|^2 = \sum_{i=1}^{N} V_i \left\|\sum_{j=1}^{k} \boldsymbol{w}_j \Delta \varphi_j(\boldsymbol{t}_i)\right\|^2$$

· Leads to a modified linear system

$$\left[\gamma_{s}\boldsymbol{G}^{\mathrm{T}}\boldsymbol{G}+\gamma_{b}\boldsymbol{L}^{\mathrm{T}}\boldsymbol{L}+\gamma_{f}\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{F}^{\mathrm{T}}\boldsymbol{F}\boldsymbol{\Phi}\right]\boldsymbol{W} = \gamma_{f}\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{F}^{\mathrm{T}}\boldsymbol{F}\boldsymbol{\bar{D}}$$

Volumetric Space Deformation

• Space-based discretization

Volumetric Space Deformation

• Space-based discretization

• Surface-based discretization

- · Design prototypes contain important geometric features
 - Planar components
 - Circular couplings or wheelhouses
 - Characteristic feature lines

- · Design prototypes contain important geometric features
 - Planar components
 - Circular couplings or wheelhouses
 - Characteristic feature lines
- Deforming the design during optimization distorts features
 - Impaired functionality
 - Violated production limitations

- · Design prototypes contain important geometric features
 - Planar components
 - Circular couplings or wheelhouses
 - Characteristic feature lines
- Deforming the design during optimization distorts features
 - Impaired functionality
 - Violated production limitations
- · Classical solution: Add penalty terms to the cost function
 - Creation of infeasible designs
 - Costly evaluation (e.g., CFD)

- Approach: Prevent distortion of features by incorporating geometric constraints into the deformation
 - + Only create feasible designs
 - + Avoid unnecessary performance evaluations

- Approach: Prevent distortion of features by incorporating geometric constraints into the deformation
 - + Only create feasible designs
 - + Avoid unnecessary performance evaluations
- Constrained deformation techniques
 - Most methods are surface-based

- Approach: Prevent distortion of features by incorporating geometric constraints into the deformation
 - + Only create feasible designs
 - + Avoid unnecessary performance evaluations
- Constrained deformation techniques
 - Most methods are surface-based
 - Projection-based constraints¹⁰

^{10.} Bouaziz et al., Shape-Up: Shaping Discrete Geometry with Projections, Computer Graphics Forum, 2012

- Define projection operators *P_t*: Plane, circle, ...
- · Measure deviation from prescribed constraints

$$E_{\text{constr}}(\boldsymbol{X}) = \sum_{t=1}^{m} \|\boldsymbol{X} - \boldsymbol{P}_t(\boldsymbol{X})\|^2$$

- Define projection operators *P_t*: Plane, circle, ...
- · Measure deviation from prescribed constraints

$$E_{\text{constr}}(\boldsymbol{X}) = \sum_{t=1}^{m} \|\boldsymbol{X} - \boldsymbol{P}_t(\boldsymbol{X})\|^2$$

- Projections P_t typically are nonlinear functions of X
- → Minimize E_{constr} by iterative alternating optimization

- Define projection operators P_t: Plane, circle, ...
- · Measure deviation from prescribed constraints

$$E_{\text{constr}}(\boldsymbol{X}) = \sum_{t=1}^{m} \|\boldsymbol{X} - \boldsymbol{P}_t(\boldsymbol{X})\|^2$$

- Projections P_t typically are nonlinear functions of X
- → Minimize E_{constr} by iterative alternating optimization
 - Integrated into deformation framework
 - Extended original formulation to scale to large constraint areas

Geometric Constraint Examples

Fundamental geometric constraints: Planarity, circularity, feature lines

Geometric Constraint Examples

Fundamental geometric constraints: Planarity, circularity, feature lines

Geometric Constraint Examples

Fundamental geometric constraints: Planarity, circularity, feature lines

Volume Deformation Examples

Comparison to previous results¹¹

- Original mesh quality: 0.98
- After RBF deformation: 0.951
- Using our new method: 0.954

^{11.} Sieger et al., RBF Morphing Techniques for Simulation-based Design Optimization, Engineering with Computers, 2014.

Combined Surface and Volume Deformation

Combined Surface and Volume Deformation

- A deformation technique for design optimization
 - + Modeling flexibility like surface-based methods
 - + Representation-independence of space deformations
 - + High quality comparable to RBFs
 - + Improved scalability through sparse linear systems
 - + Geometric constraints

- · A deformation technique for design optimization
 - + Modeling flexibility like surface-based methods
 - + Representation-independence of space deformations
 - + High quality comparable to RBFs
 - + Improved scalability through sparse linear systems
 - + Geometric constraints
 - Performance: Sampling, MLS basis functions, convergence
 - Complexity: Implementation, parameter dependence

- · A deformation technique for design optimization
 - + Modeling flexibility like surface-based methods
 - + Representation-independence of space deformations
 - + High quality comparable to RBFs
 - + Improved scalability through sparse linear systems
 - + Geometric constraints
 - Performance: Sampling, MLS basis functions, convergence
 - Complexity: Implementation, parameter dependence
- Central idea: Improve the design optimization process by integrating constraints *directly* into the deformation

- · A deformation technique for design optimization
 - + Modeling flexibility like surface-based methods
 - + Representation-independence of space deformations
 - High quality comparable to RBFs
 - + Improved scalability through sparse linear systems
 - + Geometric constraints
 - Performance: Sampling, MLS basis functions, convergence
 - Complexity: Implementation, parameter dependence
- Central idea: Improve the design optimization process by integrating constraints *directly* into the deformation
- Observation: Significant differences in the modeling flexibility and quality of RBFs and MLS

Directions for Future Work

- · Additional constraint types, semantic relations
 - Mutual distances
 - Symmetry
 - Co-planarity
- More tight integration with CAD tools
 - Integration into CAD-based optimization framework
 - Transfer of constraints and functional requirements
- More extensive evaluation

1. What is a good deformation technique for design optimization?

2. How to apply and improve existing techniques?

3. How to incorporate geometric constraints into the deformation?

- What is a good deformation technique for design optimization? Kernel-based space deformations provide the quality, flexibility, and robustness required for design optimization.
- 2. How to apply and improve existing techniques?

3. How to incorporate geometric constraints into the deformation?

- What is a good deformation technique for design optimization? Kernel-based space deformations provide the quality, flexibility, and robustness required for design optimization.
- How to apply and improve existing techniques?
 By exploiting the flexibility of RBFs, we can implement fully automatic design optimization loops based on CAD prototypes.
- 3. How to incorporate geometric constraints into the deformation?

- What is a good deformation technique for design optimization? Kernel-based space deformations provide the quality, flexibility, and robustness required for design optimization.
- How to apply and improve existing techniques?
 By exploiting the flexibility of RBFs, we can implement fully automatic design optimization loops based on CAD prototypes.
- 3. How to incorporate *geometric constraints* into the deformation? The combination of *MLS space deformations and projective constraints* allows for the creation of more feasible designs.

Acknowledgments

Thanks Mario and Stefan!

Thanks Honda Research Institute Europe

- Alternating optimization:
 - 1. Project current point on constraint
 - 2. Solve linear system to minimize distance to constraints

- Alternating optimization:
 - 1. Project current point on constraint
 - 2. Solve linear system to minimize distance to constraints

- Alternating optimization:
 - 1. Project current point on constraint
 - 2. Solve linear system to minimize distance to constraints
- + Flexible and simple formulation

- Alternating optimization:
 - 1. Project current point on constraint
 - 2. Solve linear system to minimize distance to constraints
- + Flexible and simple formulation
- Slow convergence for complex constraints

