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Computer-aided Design and Engineering

Tools and practices for creating highly complex industrial products
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Design Optimization and Shape Deformation

Design optimization
• Discover alternative designs with improved properties
• Decrease the need for costly real-world prototypes

Shape deformation
• Effective means to create design variations during optimization

Initial Design Simulation

OptimizationShape Deformation

Optimized Design

repeat
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Key Questions

1. What is a good deformation technique for design optimization?
– Fundamental requirements and properties
– Select from the wide variety of methods

2. How to apply and improve existing techniques?
– Effective application within design optimization
– Address specific challenges

3. How to incorporate geometric constraints into the deformation?
– Maintain critical properties such as planarity
– Maintain deformation quality and flexibility
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Outline

1. Shape deformation methods for design optimization
– Introduce the state of the art
– Benchmarks and comparisons

2. Advanced RBF deformation techniques
– Automatic CAD-based design optimization
– Avoid costly remeshing

3. Constrained deformation
– Effective constraint preservation
– High-quality, flexible deformations
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ShapeDeformation for
DesignOptimization



Thin Shell Deformation 1

• Physically-inspired technique suitable for sheet metal surfaces
• Flexible modeling of material behavior
• Based on the minimization of stretching and bending energies

1. Botsch et al., On Linear Variational Surface Deformation Methods, Trans. on Visualization and Computer Graphics, 2008
7



Limitations

Assumption: Surface 𝒮 is a proper triangle mesh
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Space Deformation Methods

• Instead of deforming the surface 𝒮, deform embedding space 𝛺
Representation independence
Disconnected components
Robustness against defects

• Construct a space deformation function 𝒅∶ 𝛺 ⊂ ℝ3 → ℝ3
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Free-Form Deformation2 (FFD)

• Idea: Embed object in control grid and deform grid
• Procedure:

1. Compute local coordinates within the control grid
2. Select and move control points
3. Deform object according to updated control points

𝒅(𝒙) =
𝑙

∑
𝑖=0

𝑚

∑
𝑗=0

𝑛

∑
𝑘=0
𝛿𝒄𝑖𝑗𝑘𝜑𝑖(𝑢1)𝜑𝑗(𝑢2)𝜑𝑘(𝑢3),

2. Sederberg and Parry, Free-Form Deformation of Solid Geometric Models, SIGGRAPH 1986
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FFD Limitations

Manipulating large control grids by hand is tedious
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Direct Manipulation FFD3

• Move object points directly (constraints)
• Compute control point displacements satisfying constraints
• Requires solving a linear system (pseudo-inverse, SVD)

Minimizes constraint error and control point movement

Not physically plausible, not precise enough

3. Hsu et al. Direct Manipulation of Free-Form Deformations, SIGGRAPH 1992
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Radial Basis Function Deformation4

• Deformation as scattered data interpolation problem
– Exactly interpolate prescribed displacements
– Smoothly interpolate displacements through space

Ô Radial basis functions (RBFs)

4. Botsch and Kobbelt, Real-Time Shape Editing Using Radial Basis Functions, Computer Graphics Forum, 2005
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Radial Basis Function Deformation4

• Deformation as scattered data interpolation problem
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Radial Basis Functions

• Various choices: Gaussian, multiquadrics, thin plate spline...
• Choose triharmonic basis functions 𝜑(𝑟) = 𝑟3 so that 𝒅 minimizes
fairness energy:

∫
ℝ3
‖𝜕
3𝒅
𝜕𝑥3
‖
2
+ ‖ 𝜕
3𝒅
𝜕𝑥2𝜕𝑦
‖
2
+… + ‖𝜕

3𝒅
𝜕𝑧3
‖
2
dV

• Determine weights and polynomial coefficients
Ô Solve linear system
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Performance Comparison5

Precomputed deformation, times in seconds

0

2

4

6

3

5.8

0.5

FFD
DM-FFD
RBF

5. Sieger et al.,On Shape Deformation Techniques for Simulation-based Design Optimization, New Challenges in Grid Generation
and Adaptivity for Scientific Computing, 2015
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Robustness

DM-FFD: Solving the linear system using SVD requires clamping of
small singular values. Since the clamping value is not known in
advance, robustness artifacts might occur.

16



Quality

Quality comparison using mean curvature:
• FFD methods (center) might lead to smoothness artifacts
• RBFs (right) yield highly smooth results

17



Quality

FFD: The shape of the deformation depends on grid resolution and not
on some form of physically-inspired energy minimization

18



Volume Mesh Deformation

• Deformation of a hex-dominant volume mesh for CFD simulation

Depending on the FFD grid resolution the mesh becomes
unusable for simulation
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Evaluation Summary

Performance Robustness Quality Adaptivity Precision

FFD • •
DM-FFD • • •
RBF •

• : neutral : positive : negative

20



Key Questions and Answers

1. What is a good deformation technique for design optimization?

Kernel-based space deformations provide the quality, flexibility, and
robustness required for design optimization.

2. How to apply and improve existing techniques?
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Advanced RBFDeformation Techniques



Advanced RBF Deformation Techniques 6

• Unified framework for combined surface and volume deformation
• Preventing self-intersections by splitting
• Performance improvements through advanced linear solvers

6. Sieger et al., RBF Morphing Techniques for Simulation-based Design Optimization, Engineering with Computers, 2014
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Shape Deformation & Design Optimization

Initial Design Simulation

OptimizationShape Deformation

Optimized Design

Meshing?

Meshing?Surface Mesh Surface Mesh
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Generalized Design Optimization Scenario

Initial Design

Meshing

Simulation

Design Variation Shape Deformation

Optimized Design
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Unified Framework

Procedure:

1. Update CAD model

2. Surface deformation:
Compute surface points matching updated CAD model

3. Volume deformation:
Compute volume points matching updated surface points

26



Surface Deformation

CAD

Mesh CAD Variation

Surface Deformation

Surface Nodes
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Surface Deformation

1. Determine parametric coordinates for each surface node

2. Construct 2D RBF deformation to warp coordinates

𝛺

𝛺′

𝒇𝑘

𝒇′𝑘

𝒅𝑘 ∶ ℝ2 → ℝ2
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Surface Deformation

Staten et al. 20117
Sieger et al. 2014

7. Staten et al., A Comparison of Mesh Morphing Methods for 3D Shape Optimization, IMR 2011
29



Surface Deformation

Staten et al. 2011 Sieger et al. 2014
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Volume Deformation

𝒱

𝒅∶ ℝ3 → ℝ3

𝒙′ = 𝒙 + 𝒅(𝒙)

𝒱′

30



Volume Deformation Quality

• Comparison with best techniques from Staten et al. 2011
• Min. scaled Jacobian vs. parameter change in the CAD model
• Tetrahedral and hexahedral volume meshes
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Key Questions and Answers

1. What is a good deformation technique for design optimization?

Kernel-based space deformations provide the quality, flexibility, and
robustness required for design optimization.

2. How to apply and improve existing techniques?

By exploiting the flexibility of RBFs, we can implement fully
automatic design optimization loops based on CAD prototypes.

3. How to incorporate geometric constraints into the deformation?

32
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ConstrainedDeformation



Constrained Space Deformation for Design Optimization7

Combines
• Modeling flexibility of surface-based methods
• Representation-independence of space deformations
• Quality of RBFs
• Improved scalability
• Geometric constraints

7. Sieger et al., Constrained Space Deformation for Design Optimization, Computer-Aided Design 2016
34



Surface Deformation Revisited

• Surface-based methods allow for flexible modeling of material
behavior by explicitly choosing the deformation energy to be
minimized

• Goal: Achieve the same flexibility using space deformations
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Thin Shell Deformation

Measure stretching and bending by 1st and 2nd order partial derivatives
of the displacement function 𝒅∶ 𝑆 → ℝ3

𝐸stretch[𝒅] = ∫
u�
‖∇𝒅(𝒙)‖2 d𝒙

𝐸bend[𝒅] = ∫
u�
‖Δ𝒅(𝒙)‖2 d𝒙

𝐸fix[𝒅] = ∫
ℋ∪ℱ
‖𝒅(𝒙) − ̄𝒅(𝒙)‖2 d𝒙

ℱ ℋ 𝒟

36



Surface-Based Discretization

• Discretize on the mesh using standard differential operators 8

𝐸stretch[𝒅] = ∑
𝑡∈u�
𝐴𝑡 ‖∇𝜹𝑡‖2

𝐸bend[𝒅] = ∑
𝒙𝑖∈u�
𝐴𝑖 ‖Δ𝜹𝑖‖2

𝐸fix[𝒅] = ∑
𝒙𝑖∈ℋ∪ℱ

𝐴𝑖 ‖𝜹𝑖 − ̄𝜹𝑖‖
2

Ô Solve a linear system:

[𝛾𝑠𝑮T𝑮 + 𝛾𝑏𝑳T𝑳 + 𝛾𝑓𝑭T𝑭]𝑫 = 𝛾𝑓𝑭T𝑭𝑫̄

8. Meyer et al., Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, Visualization and Mathematics, 2003
37



Space Deformation Methods

• Construct a space deformation function 𝒅∶ 𝛺 ⊂ ℝ3 → ℝ3
– Use meshless approximation methods
– Represent 𝒅 by basis functions 𝜑𝑗 located at centers 𝒄𝑗:

𝒅(𝒙) =
𝑘

∑
𝑗=1
𝒘𝑗𝜑𝑗(𝒙)

• Questions:

– Which basis functions to choose?
– Where to place basis functions?

38
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Surface Sampling

Goal: Generate uniformly distributed points 𝒄𝑗 on the surface

1. Dense random sampling of each mesh face

2. Farthest point selection

3. Lloyd relaxation (k-means clustering)
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Subspace Surface Deformation

• Which basis functions 𝜑𝑗 to choose?

• Goal: Achieve same modeling flexibility as surface deformation
• Ground truth: Combine surface energy with space deformation
• Express 𝑫 through coefficients𝑾 and subspace matrix 𝜱

𝑫 = 𝜱𝑾 with 𝜱𝑖𝑗 = 𝜑𝑗(𝒙𝑖)

• Leads to a modified linear system:

𝜱T [𝛾𝑠𝑮T𝑮 + 𝛾𝑏𝑳T𝑳 + 𝛾𝑓𝑭T𝑭]𝜱𝑾 = 𝜱T [𝛾𝑓𝑭T𝑭𝑫̄]

40



Subspace Surface Deformation

• Which basis functions 𝜑𝑗 to choose?
• Goal: Achieve same modeling flexibility as surface deformation

• Ground truth: Combine surface energy with space deformation
• Express 𝑫 through coefficients𝑾 and subspace matrix 𝜱

𝑫 = 𝜱𝑾 with 𝜱𝑖𝑗 = 𝜑𝑗(𝒙𝑖)

• Leads to a modified linear system:

𝜱T [𝛾𝑠𝑮T𝑮 + 𝛾𝑏𝑳T𝑳 + 𝛾𝑓𝑭T𝑭]𝜱𝑾 = 𝜱T [𝛾𝑓𝑭T𝑭𝑫̄]

40



Subspace Surface Deformation

• Which basis functions 𝜑𝑗 to choose?
• Goal: Achieve same modeling flexibility as surface deformation
• Ground truth: Combine surface energy with space deformation

• Express 𝑫 through coefficients𝑾 and subspace matrix 𝜱

𝑫 = 𝜱𝑾 with 𝜱𝑖𝑗 = 𝜑𝑗(𝒙𝑖)

• Leads to a modified linear system:

𝜱T [𝛾𝑠𝑮T𝑮 + 𝛾𝑏𝑳T𝑳 + 𝛾𝑓𝑭T𝑭]𝜱𝑾 = 𝜱T [𝛾𝑓𝑭T𝑭𝑫̄]

40



Subspace Surface Deformation

• Which basis functions 𝜑𝑗 to choose?
• Goal: Achieve same modeling flexibility as surface deformation
• Ground truth: Combine surface energy with space deformation
• Express 𝑫 through coefficients𝑾 and subspace matrix 𝜱

𝑫 = 𝜱𝑾 with 𝜱𝑖𝑗 = 𝜑𝑗(𝒙𝑖)

• Leads to a modified linear system:

𝜱T [𝛾𝑠𝑮T𝑮 + 𝛾𝑏𝑳T𝑳 + 𝛾𝑓𝑭T𝑭]𝜱𝑾 = 𝜱T [𝛾𝑓𝑭T𝑭𝑫̄]

40



Subspace Surface Deformation

• Which basis functions 𝜑𝑗 to choose?
• Goal: Achieve same modeling flexibility as surface deformation
• Ground truth: Combine surface energy with space deformation
• Express 𝑫 through coefficients𝑾 and subspace matrix 𝜱

𝑫 = 𝜱𝑾 with 𝜱𝑖𝑗 = 𝜑𝑗(𝒙𝑖)

• Leads to a modified linear system:

𝜱T [𝛾𝑠𝑮T𝑮 + 𝛾𝑏𝑳T𝑳 + 𝛾𝑓𝑭T𝑭]𝜱𝑾 = 𝜱T [𝛾𝑓𝑭T𝑭𝑫̄]

40



Subspace Surface Deformation

• Global triharmonic RBFs

𝜑𝑗(𝒙) = ‖𝒙 − 𝒄𝑗‖
3

• Energy minimization built-in

• Good results for bending

, bad results for stretching

• Global support→ dense linear systems
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Subspace Surface Deformation

• Compactly supported RBFs

𝜑𝑗(𝒙) = 𝜑 (‖𝒙 − 𝒄𝑗‖) = 𝜑(𝑟) = {
(1 − 𝑟)4(4𝑟 + 1) , 𝑟 < 𝜎 ,
0 , otherwise .
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Subspace Surface Deformation

• Moving Least Squares (MLS) basis functions9

𝜑𝑗(𝒙) = 𝒑(𝒙)T𝑴−1(𝒙)𝒑(𝒄𝑗)𝑤(𝒙 − 𝒄𝑗)

• More complex form, inversion of𝑴 required

9. Fries et al., Classification and Overview of Meshfree Methods, Technical Report, TU Braunschweig, 2003
43



Subspace Surface Deformation

• Moving Least Squares (MLS) basis functions9

𝜑𝑗(𝒙) = 𝒑(𝒙)T𝑴−1(𝒙)𝒑(𝒄𝑗)𝑤(𝒙 − 𝒄𝑗)

polynomial basis

• More complex form, inversion of𝑴 required

9. Fries et al., Classification and Overview of Meshfree Methods, Technical Report, TU Braunschweig, 2003
43



Subspace Surface Deformation

• Moving Least Squares (MLS) basis functions9

𝜑𝑗(𝒙) = 𝒑(𝒙)T𝑴−1(𝒙)𝒑(𝒄𝑗)𝑤(𝒙 − 𝒄𝑗)

polynomial basis

4 × 4moment matrix

• More complex form, inversion of𝑴 required

9. Fries et al., Classification and Overview of Meshfree Methods, Technical Report, TU Braunschweig, 2003
43



Subspace Surface Deformation

• Moving Least Squares (MLS) basis functions9

𝜑𝑗(𝒙) = 𝒑(𝒙)T𝑴−1(𝒙)𝒑(𝒄𝑗)𝑤(𝒙 − 𝒄𝑗)

polynomial basis

4 × 4moment matrix

weighting function

• More complex form, inversion of𝑴 required

9. Fries et al., Classification and Overview of Meshfree Methods, Technical Report, TU Braunschweig, 2003
43



Subspace Surface Deformation

• Moving Least Squares (MLS) basis functions9

𝜑𝑗(𝒙) = 𝒑(𝒙)T𝑴−1(𝒙)𝒑(𝒄𝑗)𝑤(𝒙 − 𝒄𝑗)

polynomial basis

4 × 4moment matrix

weighting function

• More complex form, inversion of𝑴 required

9. Fries et al., Classification and Overview of Meshfree Methods, Technical Report, TU Braunschweig, 2003
43



Subspace Surface Deformation

• Moving Least Squares (MLS) basis functions

Small support→ sparse linear system, good results

44



Subspace Surface Deformation

• Moving Least Squares (MLS) basis functions

Small support→ sparse linear system, good results

44



Volumetric Space Deformation

• Goal: Fully space-based discretization of stretching and bending
energies using MLS approximation

• Replace vertex-based integration over the surface 𝒮 with purely
space-based integration method

• Use Lloyd-based sampling to determine integration points 𝒕𝑖
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Volumetric Space Deformation

• Evaluate gradients and Laplacians of 𝜑𝑗 at integration points 𝒕𝑖:

𝐸stretch =
𝑁

∑
𝑖=1
𝑉𝑖 ‖∇𝒅(𝒕𝑖)‖2 =

𝑁

∑
𝑖=1
𝑉𝑖 ‖
𝑘

∑
𝑗=1
𝒘𝑗∇𝜑𝑗(𝒕𝑖)‖

2

𝐸bend =
𝑁

∑
𝑖=1
𝑉𝑖 ‖Δ𝒅(𝒕𝑖)‖2 =

𝑁

∑
𝑖=1
𝑉𝑖 ‖
𝑘

∑
𝑗=1
𝒘𝑗Δ𝜑𝑗(𝒕𝑖)‖

2

• Leads to a modified linear system

[𝛾𝑠𝑮T𝑮 + 𝛾𝑏𝑳T𝑳 + 𝛾𝑓𝜱T𝑭T𝑭𝜱]𝑾 = 𝛾𝑓𝜱T𝑭T𝑭𝑫̄
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Volumetric Space Deformation

• Space-based discretization

• Surface-based discretization
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Geometric Constraints

• Design prototypes contain important geometric features
– Planar components
– Circular couplings or wheelhouses
– Characteristic feature lines

• Deforming the design during optimization distorts features
Impaired functionality
Violated production limitations

• Classical solution: Add penalty terms to the cost function
Creation of infeasible designs
Costly evaluation (e.g., CFD)
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Geometric Constraints

• Approach: Prevent distortion of features by incorporating
geometric constraints into the deformation

Only create feasible designs
Avoid unnecessary performance evaluations

• Constrained deformation techniques
Most methods are surface-based
Projection-based constraints
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Geometric Constraints

• Approach: Prevent distortion of features by incorporating
geometric constraints into the deformation

Only create feasible designs
Avoid unnecessary performance evaluations

• Constrained deformation techniques
Most methods are surface-based
Projection-based constraints10

10. Bouaziz et al., Shape-Up: Shaping Discrete Geometry with Projections, Computer Graphics Forum, 2012
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Projection-Based Constraints

• Define projection operators 𝑃𝑡: Plane, circle, ...
• Measure deviation from prescribed constraints

𝐸constr(𝑿) =
𝑚

∑
𝑡=1
‖𝑿 − 𝑃𝑡(𝑿)‖2

• Projections 𝑃𝑡 typically are nonlinear functions of 𝑿
Ô Minimize 𝐸constr by iterative alternating optimization
• Integrated into deformation framework
• Extended original formulation to scale to large constraint areas
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Geometric Constraint Examples

Fundamental geometric constraints: Planarity, circularity, feature lines
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Volume Deformation Examples

Comparison to previous results11

• Original mesh quality: 0.98
• After RBF deformation: 0.951
• Using our new method: 0.954

𝒱

𝒅∶ ℝ3 → ℝ3

𝒱′

11. Sieger et al., RBF Morphing Techniques for Simulation-based Design Optimization, Engineering with Computers, 2014
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Combined Surface and Volume Deformation
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Combined Surface and Volume Deformation
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Constrained Deformation Summary

• A deformation technique for design optimization
Modeling flexibility like surface-based methods
Representation-independence of space deformations
High quality comparable to RBFs
Improved scalability through sparse linear systems
Geometric constraints

Performance: Sampling, MLS basis functions, convergence
Complexity: Implementation, parameter dependence

• Central idea: Improve the design optimization process by
integrating constraints directly into the deformation

• Observation: Significant differences in the modeling flexibility and
quality of RBFs and MLS
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Directions for Future Work

• Additional constraint types, semantic relations
– Mutual distances
– Symmetry
– Co-planarity

• More tight integration with CAD tools
– Integration into CAD-based optimization framework
– Transfer of constraints and functional requirements

• More extensive evaluation
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Key Questions and Answers

1. What is a good deformation technique for design optimization?

Kernel-based space deformations provide the quality, flexibility, and
robustness required for design optimization.

2. How to apply and improve existing techniques?

By exploiting the flexibility of RBFs, we can implement fully
automatic design optimization loops based on CAD prototypes.

3. How to incorporate geometric constraints into the deformation?

The combination ofMLS space deformations and projective
constraints allows for the creation of more feasible designs.
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Projection-Based Constraints

• Alternating optimization:
1. Project current point on constraint
2. Solve linear system to minimize distance to constraints

Flexible and simple formulation

Slow convergence for complex constraints
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